Comparing Deep Learning and MCWST Approaches for Individual Tree Crown Segmentation

Wen Fan, Jiaojiao Tian, Jonas Troles, Martin Döllerer, Mengistie Kindu, Thomas Knoke

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

Accurate segmentation of individual tree crowns (ITC) segmentation is essential for investigating tree-level based growth trends and assessing tree vitality. ITC segmentation using remote sensing data faces challenges due to crown heterogeneity, overlapping crowns and data quality. Currently, both classical and deep learning methods have been employed for crown detection and segmentation. However, the effectiveness of deep learning based approaches is limited by the need for high-quality annotated datasets. Benefiting from the BaKIM project, a high-quality annotated dataset can be provided and tested with a Mask Region-based Convolutional Neural Network (Mask R-CNN). In addition, we have used the deep learning based approach to detect the tree locations thus refining the previous Marker controlled Watershed Transformation (MCWST) segmentation approach. The experimental results show that the Mask R-CNN model exhibits better model performance and less time cost compared to the MCWST algorithm for ITC segmentation. In summary, the proposed framework can achieve robust and fast ITC segmentation, which has the potential to support various forest applications such as tree vitality estimation.

Original languageEnglish
Pages (from-to)67-73
Number of pages7
JournalISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume10
Issue number1
DOIs
StatePublished - 9 May 2024
Event2024 ISPRS Technical Commission I Mid-term Symposium on Intelligent Sensing and Remote Sensing Application - Changsha, China
Duration: 13 May 202417 May 2024

Keywords

  • Individual tree crown segmentation
  • Instance segmentation
  • Levelset-Watershed
  • Mask R-CNN
  • UAV imagery

Fingerprint

Dive into the research topics of 'Comparing Deep Learning and MCWST Approaches for Individual Tree Crown Segmentation'. Together they form a unique fingerprint.

Cite this