Comparative validation study on identification of premixed flame transfer function

Luis Tay-Wo-Chong, Sebastian Bomberg, Ahtsham Ulhaq, Thomas Komarek, Wolfgang Polifke

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The flame transfer function (FTF) of a premixed swirl burner was identified from time series generated with CFD simulation of compressible, turbulent, reacting flow at non-adiabatic conditions. Results were validated against experimental data. For large eddy simulation (LES), the Dynamically Thickened Flame combustion model with one step kinetics was used. For unsteady simulation in a Reynolds-averaged Navier-Stokes framework (URANS), the Turbulent Flame Closure model was employed. The FTF identified from LES shows quantitative agreement with experiment for amplitude and phase, especially for frequencies below 200 Hz. At higher frequencies, the gain of the FTF is underpredicted. URANS results show good qualitative agreement, capturing the main features of the flame response. However, the maximum amplitude and the phase lag of the FTF are underpredicted. Using a low-order network model of the test rig, the impact of the discrepancies in predicted FTFs on frequencies and growth rates of the lowest order eigenmodes were assessed. Small differences in predicted FTFs were found to have a significant impact on stability limits. Stability behavior in agreement with experimental data was achieved only with the LES-based flame transfer function.

Original languageEnglish
Title of host publicationASME 2011 Turbo Expo
Subtitle of host publicationTurbine Technical Conference and Exposition, GT2011
Pages1109-1118
Number of pages10
EditionPARTS A AND B
DOIs
StatePublished - 2011
EventASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011 - Vancouver, BC, Canada
Duration: 6 Jun 201110 Jun 2011

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume2

Conference

ConferenceASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011
Country/TerritoryCanada
CityVancouver, BC
Period6/06/1110/06/11

Fingerprint

Dive into the research topics of 'Comparative validation study on identification of premixed flame transfer function'. Together they form a unique fingerprint.

Cite this