TY - GEN
T1 - Comparative Study of Active Power Curtailment Methods of PVs for Preventing Overvoltage on Distribution Feeders
AU - Paudyal, Sumit
AU - Bhattarai, Bishnu P.
AU - Tonkoski, Reinaldo
AU - Dahal, Sudarshan
AU - Ceylan, Oguzhan
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/21
Y1 - 2018/12/21
N2 - Overvoltage is one of the major issues on distribution grids with high penetration of photovoltaic (PV) generation. Overvoltage could be prevented through the control of active/reactive power of PVs. However, given the high R/X ratio of low voltage feeders, voltage control by using reactive power would not be as effective as using active power. Therefore, active power curtailment (APC) of PVs, though not desirable, becomes necessary at times to prevent the overvoltage issues. Existing literature is rich in centralized and droop-based methods for APC and/or reactive power control of PVs to prevent overvoltage issues. In this context, this paper revisits the most popular existing methods, and evaluates the performance of droop-based and centralized methods using a typical North American 240 V low voltage feeder with 24 residential homes. In this work, our key findings are: a) droop-based methods provided conservative solutions or did not eliminate the overvoltages completely, b) power flow sensitivity based droop approach led to 13% more curtailment than the centralized approaches, c) centralized approach had 40% less energy curtailed compared with standard droop while no overvoltages were observed, and d) operating PVs at non-unity power factor in centralized approach led to 5% less energy curtailment.
AB - Overvoltage is one of the major issues on distribution grids with high penetration of photovoltaic (PV) generation. Overvoltage could be prevented through the control of active/reactive power of PVs. However, given the high R/X ratio of low voltage feeders, voltage control by using reactive power would not be as effective as using active power. Therefore, active power curtailment (APC) of PVs, though not desirable, becomes necessary at times to prevent the overvoltage issues. Existing literature is rich in centralized and droop-based methods for APC and/or reactive power control of PVs to prevent overvoltage issues. In this context, this paper revisits the most popular existing methods, and evaluates the performance of droop-based and centralized methods using a typical North American 240 V low voltage feeder with 24 residential homes. In this work, our key findings are: a) droop-based methods provided conservative solutions or did not eliminate the overvoltages completely, b) power flow sensitivity based droop approach led to 13% more curtailment than the centralized approaches, c) centralized approach had 40% less energy curtailed compared with standard droop while no overvoltages were observed, and d) operating PVs at non-unity power factor in centralized approach led to 5% less energy curtailment.
KW - Distribution Grid
KW - Inverter
KW - Overvoltage
KW - Photovoltaic
KW - Power Curtailment
KW - Voltage Control
UR - http://www.scopus.com/inward/record.url?scp=85060810622&partnerID=8YFLogxK
U2 - 10.1109/PESGM.2018.8585526
DO - 10.1109/PESGM.2018.8585526
M3 - Conference contribution
AN - SCOPUS:85060810622
T3 - IEEE Power and Energy Society General Meeting
BT - 2018 IEEE Power and Energy Society General Meeting, PESGM 2018
PB - IEEE Computer Society
T2 - 2018 IEEE Power and Energy Society General Meeting, PESGM 2018
Y2 - 5 August 2018 through 10 August 2018
ER -