TY - GEN
T1 - Comparative micro computed tomography study of a vertebral body
AU - Drews, Susanne
AU - Beckmann, Felix
AU - Herzen, Julia
AU - Brunke, Oliver
AU - Salmon, Phil
AU - Friess, Sebastian
AU - Laib, Andres
AU - Koller, Bruno
AU - Hemberger, Thomas
AU - Müller-Gerbl, Magdalena
AU - Müller, Bert
PY - 2008
Y1 - 2008
N2 - Investigations of bony tissues are often performed using micro computed tomography based on X-rays, since the calcium distribution leads to superior contrast. Osteoporotic bone, for example, can be well compared with healthy one with respect to density and morphology. Degenerative and rheumatoid diseases usually start, however, at the bone-cartilage-interface, which is hardly accessible. The direct influence on the bone itself becomes only visible at later stage. For the development of suitable therapies against degenerative cartilage damages the exact three-dimensional description of the bone-cartilage interface is vital, as demonstrated for transplanted cartilage-cells or bone-cartilage-constructs in animal models. So far, the morphological characterization was restricted to magnetic resonance imaging (MRI) with poor spatial resolution or to time-consuming histological sectioning with appropriate spatial resolution only in two rather arbitrarily chosen directions. Therefore, one should develop μCT to extract the features of low absorbing cartilage. The morphology and the volume of the inter-vertebral cartilage disc of lumbar motion segments have been determined for one PMMA embedded specimen. Tomograms were recorded using nanotom® (Phoenix/x-ray, Wunstorf, Germany), μCT 35TM (Scanco Medical, Brütisellen, Switzerland), 1172 TM and 1174TM (both Skyscan, Kontich, Belgium), as well as using the SRμCT at HASYLAB/DESY. Conventional and SRμCT can provide the morphology and the volume of cartilage between bones. Increasing the acquisition time, the signal-to-noise ratio becomes better and better but the prominent artifacts in conventional μCT as the result of inhomogeneously distributed bony tissue prevents the exact segmentation of cartilage. SRμCT allows segmenting the cartilage but requires long periods of expensive beam-time to obtain reasonable contrast.
AB - Investigations of bony tissues are often performed using micro computed tomography based on X-rays, since the calcium distribution leads to superior contrast. Osteoporotic bone, for example, can be well compared with healthy one with respect to density and morphology. Degenerative and rheumatoid diseases usually start, however, at the bone-cartilage-interface, which is hardly accessible. The direct influence on the bone itself becomes only visible at later stage. For the development of suitable therapies against degenerative cartilage damages the exact three-dimensional description of the bone-cartilage interface is vital, as demonstrated for transplanted cartilage-cells or bone-cartilage-constructs in animal models. So far, the morphological characterization was restricted to magnetic resonance imaging (MRI) with poor spatial resolution or to time-consuming histological sectioning with appropriate spatial resolution only in two rather arbitrarily chosen directions. Therefore, one should develop μCT to extract the features of low absorbing cartilage. The morphology and the volume of the inter-vertebral cartilage disc of lumbar motion segments have been determined for one PMMA embedded specimen. Tomograms were recorded using nanotom® (Phoenix/x-ray, Wunstorf, Germany), μCT 35TM (Scanco Medical, Brütisellen, Switzerland), 1172 TM and 1174TM (both Skyscan, Kontich, Belgium), as well as using the SRμCT at HASYLAB/DESY. Conventional and SRμCT can provide the morphology and the volume of cartilage between bones. Increasing the acquisition time, the signal-to-noise ratio becomes better and better but the prominent artifacts in conventional μCT as the result of inhomogeneously distributed bony tissue prevents the exact segmentation of cartilage. SRμCT allows segmenting the cartilage but requires long periods of expensive beam-time to obtain reasonable contrast.
KW - Bone-cartilage interface
KW - Micro computed tomography
KW - Spine
KW - Synchrotron radiation
UR - http://www.scopus.com/inward/record.url?scp=56249127865&partnerID=8YFLogxK
U2 - 10.1117/12.793815
DO - 10.1117/12.793815
M3 - Conference contribution
AN - SCOPUS:56249127865
SN - 9780819472984
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Developments in X-Ray Tomography VI
T2 - Developments in X-Ray Tomography VI
Y2 - 12 August 2008 through 14 August 2008
ER -