TY - JOUR
T1 - Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ-proteobacteria
AU - Behr, Stefan
AU - Brameyer, Sophie
AU - Witting, Michael
AU - Schmitt-Kopplin, Philipp
AU - Jung, Kirsten
N1 - Publisher Copyright:
© 2017 Behr et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/8
Y1 - 2017/8
N2 - Bacterial histidine kinase/response regulator systems operate at the interface between environmental cues and physiological states. Escherichia coli contains two LytS/LytTR-type histidine kinase/response regulator systems, BtsS/BtsR (formerly YehU/YehT) and YpdA/ YpdB, which have been identified as pyruvate-responsive two-component systems. Since they exhibit remarkable similarity, we analyzed their phylogenetic distribution within the γ-proteobacteria, and experimentally characterized them in a set of representative species. We found that BtsS/BtsR is the predominant LytS/LytTR-type two-component system among γ-proteobacteria, whereas YpdA/YpdB primarily appears in a supplementary role. Based on our observations in E. coli, we used the highly conserved DNA-binding motifs to test the in vivo functionality of both systems in various genera, including Salmonella, Enterobacter, Citrobacter, Xenorhabdus, Yersinia, Aeromonas and Vibrio. The results suggest that, in all cases tested, BtsS/BtsR and YpdA/YpdB respond to different levels of pyruvate in the environment.
AB - Bacterial histidine kinase/response regulator systems operate at the interface between environmental cues and physiological states. Escherichia coli contains two LytS/LytTR-type histidine kinase/response regulator systems, BtsS/BtsR (formerly YehU/YehT) and YpdA/ YpdB, which have been identified as pyruvate-responsive two-component systems. Since they exhibit remarkable similarity, we analyzed their phylogenetic distribution within the γ-proteobacteria, and experimentally characterized them in a set of representative species. We found that BtsS/BtsR is the predominant LytS/LytTR-type two-component system among γ-proteobacteria, whereas YpdA/YpdB primarily appears in a supplementary role. Based on our observations in E. coli, we used the highly conserved DNA-binding motifs to test the in vivo functionality of both systems in various genera, including Salmonella, Enterobacter, Citrobacter, Xenorhabdus, Yersinia, Aeromonas and Vibrio. The results suggest that, in all cases tested, BtsS/BtsR and YpdA/YpdB respond to different levels of pyruvate in the environment.
UR - http://www.scopus.com/inward/record.url?scp=85027335555&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0182993
DO - 10.1371/journal.pone.0182993
M3 - Article
C2 - 28796832
AN - SCOPUS:85027335555
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0182993
ER -