TY - JOUR
T1 - Comparative analysis of high-throughput assays of family-1 plant glycosyltransferases
AU - McGraphery, Kate
AU - Schwab, Wilfried
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/3/2
Y1 - 2020/3/2
N2 - The ability of glycosyltransferases (GTs) to reduce volatility, increase solubility, and thus alter the bioavailability of small molecules through glycosylation has attracted immense attention in pharmaceutical, nutraceutical, and cosmeceutical industries. The lack of GTs known and the scarcity of high-throughput (HTP) available methods, hinders the extrapolation of further novel applications. In this study, the applicability of new GT-assays suitable for HTP screening was tested and compared with regard to harmlessness, robustness, cost-effectiveness and reproducibility. The UDP-Glo GT-assay, Phosphate GT Activity assay, pH-sensitive GT-assay, and UDP2-TR-FRET assay were applied and tailored to plant UDP GTs (UGTs). Vitis vinifera (UGT72B27) GT was subjected to glycosylation reaction with various phenolics. Substrate screening and kinetic parameters were evaluated. The pH-sensitive assay and the UDP2-TR-FRET assay were incomparable and unsuitable for HTP plant GT-1 family UGT screening. Furthermore, the UDP-Glo GT-assay and the Phosphate GT Activity assay yielded closely similar and reproducible KM, vmax, and kcat values. Therefore, with the easy experimental set-up and rapid readout, the two assays are suitable for HTP screening and quantitative kinetic analysis of plant UGTs. This research sheds light on new and emerging HTP assays, which will allow for analysis of novel family-1 plant GTs and will uncover further applications.
AB - The ability of glycosyltransferases (GTs) to reduce volatility, increase solubility, and thus alter the bioavailability of small molecules through glycosylation has attracted immense attention in pharmaceutical, nutraceutical, and cosmeceutical industries. The lack of GTs known and the scarcity of high-throughput (HTP) available methods, hinders the extrapolation of further novel applications. In this study, the applicability of new GT-assays suitable for HTP screening was tested and compared with regard to harmlessness, robustness, cost-effectiveness and reproducibility. The UDP-Glo GT-assay, Phosphate GT Activity assay, pH-sensitive GT-assay, and UDP2-TR-FRET assay were applied and tailored to plant UDP GTs (UGTs). Vitis vinifera (UGT72B27) GT was subjected to glycosylation reaction with various phenolics. Substrate screening and kinetic parameters were evaluated. The pH-sensitive assay and the UDP2-TR-FRET assay were incomparable and unsuitable for HTP plant GT-1 family UGT screening. Furthermore, the UDP-Glo GT-assay and the Phosphate GT Activity assay yielded closely similar and reproducible KM, vmax, and kcat values. Therefore, with the easy experimental set-up and rapid readout, the two assays are suitable for HTP screening and quantitative kinetic analysis of plant UGTs. This research sheds light on new and emerging HTP assays, which will allow for analysis of novel family-1 plant GTs and will uncover further applications.
KW - Family-1 UGTs
KW - Glycosyltransferase
KW - High-throughput assay
KW - Kinetics
KW - Phosphate GT assay
KW - Screening
KW - UDP-Glo assay
UR - http://www.scopus.com/inward/record.url?scp=85082380401&partnerID=8YFLogxK
U2 - 10.3390/ijms21062208
DO - 10.3390/ijms21062208
M3 - Article
C2 - 32210023
AN - SCOPUS:85082380401
SN - 1661-6596
VL - 21
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 6
M1 - 2208
ER -