Compact and High-Performance TCAM Based on Scaled Double-Gate FeFETs

Liu Liu, Shubham Kumar, Simon Thomann, Hussam Amrouch, Xiaobo Sharon Hu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Ternary content addressable memory (TCAM), widely used in network routers and high-associativity caches, is gaining popularity in machine learning and data-analytic applications. Ferroelectric FETs (FeFETs) are a promising candidate for implementing TCAM owing to their high ON/OFF ratio, non-volatility, and CMOS compatibility. However, conventional single-gate FeFETs (SG-FeFETs) suffer from relatively high write voltage, low endurance, potential read disturbance, and face scaling challenges. Recently, a double-gate FeFET (DG-FeFET) has been proposed and outperforms SG-FeFETs in many aspects. This paper investigates TCAM design challenges specific to DG-FeFETs and introduces a novel 1.5T1Fe TCAM design based on DG-FeFETs. A 2-step search with early termination is employed to reduce the cell area and improve energy efficiency. A shared driver design is proposed to reduce the peripherals area. Detailed analysis and SPICE simulation show that the 1.5T1Fe DGTCAM leads to superior search speed and energy efficiency. The 1.5T1Fe TCAM design can also be built with SG-FeFETs, which achieve search latency and energy improvement compared with 2FeFET TCAM.

Original languageEnglish
Title of host publication2023 60th ACM/IEEE Design Automation Conference, DAC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350323481
DOIs
StatePublished - 2023
Event60th ACM/IEEE Design Automation Conference, DAC 2023 - San Francisco, United States
Duration: 9 Jul 202313 Jul 2023

Publication series

NameProceedings - Design Automation Conference
Volume2023-July
ISSN (Print)0738-100X

Conference

Conference60th ACM/IEEE Design Automation Conference, DAC 2023
Country/TerritoryUnited States
CitySan Francisco
Period9/07/2313/07/23

Fingerprint

Dive into the research topics of 'Compact and High-Performance TCAM Based on Scaled Double-Gate FeFETs'. Together they form a unique fingerprint.

Cite this