TY - JOUR
T1 - Combining regenerative braking and anti-lock braking for enhanced braking performance and efficiency
AU - Rosenberger, Martin
AU - Uhlig, Richard Anton
AU - Koch, Tilo
AU - Lienkamp, Markus
PY - 2012
Y1 - 2012
N2 - The anti-lock braking system (ABS) is a widespread driver assistance system which allows a short braking distance while simultaneously maintaining the stability and steerability of the car. Vehicles with electric single-wheel drive offer many possibilities of improving the energy efficiency and the braking performance during ABS braking. In this paper, two different ways of including the electric machines in the ABS are analyzed in detail: the damping of torsional drive train vibrations in combination with recuperation and the dynamic split of the braking torque, where the hydraulic braking torque is kept constant and the dynamic modulation of the braking torque is performed by the electric machines. The damping algorithm is developed on the basis of a linearized model of the drive train and the tire-road contact by using state feedback and pole placement methods. Simulation results with a detailed multi-body system show the effectiveness of the control algorithms.
AB - The anti-lock braking system (ABS) is a widespread driver assistance system which allows a short braking distance while simultaneously maintaining the stability and steerability of the car. Vehicles with electric single-wheel drive offer many possibilities of improving the energy efficiency and the braking performance during ABS braking. In this paper, two different ways of including the electric machines in the ABS are analyzed in detail: the damping of torsional drive train vibrations in combination with recuperation and the dynamic split of the braking torque, where the hydraulic braking torque is kept constant and the dynamic modulation of the braking torque is performed by the electric machines. The damping algorithm is developed on the basis of a linearized model of the drive train and the tire-road contact by using state feedback and pole placement methods. Simulation results with a detailed multi-body system show the effectiveness of the control algorithms.
UR - http://www.scopus.com/inward/record.url?scp=85072487996&partnerID=8YFLogxK
U2 - 10.4271/2012-01-0234
DO - 10.4271/2012-01-0234
M3 - Conference article
AN - SCOPUS:85072487996
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - SAE 2012 World Congress and Exhibition
Y2 - 24 April 2012 through 26 April 2012
ER -