Combinatorial preconditioners for proximal algorithms on graphs

Thomas Möllenhoff, Zhenzhang Ye, Tao Wu, Daniel Cremers

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

We present a novel preconditioning technique for proximal optimization methods that relies on graph algorithms to construct effective preconditioners. Such combinatorial preconditioners arise from partitioning the graph into forests. We prove that certain decompositions lead to a theoretically optimal condition number. We also show how ideal decompositions can be realized using matroid partitioning and propose efficient greedy variants thereof for large-scale problems. Coupled with specialized solvers for the resulting scaled proximal subproblems, the preconditioned algorithm achieves competitive performance in machine learning and vision applications.

Original languageEnglish
Pages38-47
Number of pages10
StatePublished - 2018
Event21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spain
Duration: 9 Apr 201811 Apr 2018

Conference

Conference21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
Country/TerritorySpain
CityPlaya Blanca, Lanzarote, Canary Islands
Period9/04/1811/04/18

Fingerprint

Dive into the research topics of 'Combinatorial preconditioners for proximal algorithms on graphs'. Together they form a unique fingerprint.

Cite this