Colorimetric Sensor Reading and Illumination Correction via Multi-Task Deep-Learning

Alejandra Castelblanco, Giusy Matzeu, Elisabetta Ruggeri, Fiorenzo G. Omenetto, Anne Hilgendorff, Julia A. Schnabel, Benjamin Schubert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Colorimetric sensors represent an accessible and sensitive nanotechnology for rapid and accessible measurement of a substance's properties (e.g., analyte concentration) via color changes. Although colorimetric sensors are widely used in healthcare and laboratories, interpretation of their output is performed either by visual inspection or using cameras in highly controlled illumination set-ups, limiting their usage in end-user applications, with lower resolutions and altered light conditions. For that purpose, we implement a set of image processing and deep-learning (DL) methods that correct for non-uniform illumination alterations and accurately read the target variable from the color response of the sensor. Methods that perform both tasks independently vs. jointly in a multi-task model are evaluated. Video recordings of colorimetric sensors measuring temperature conditions were collected to build an experimental reference dataset. Sensor images were augmented with non-uniform color alterations. The best-performing DL architecture disentangles the luminance, chrominance, and noise via separate decoders and integrates a regression task in the latent space to predict the sensor readings, achieving a mean squared error (MSE) performance of 0.811±0.074[°C] and r2=0.930±0.007, under strong color perturbations, resulting in an improvement of 1.26[°C] when compared to the MSE of the best performing method with independent denoising and regression tasks.Clinical Relevance - The proposed methodology aims to improve the accuracy of colorimetric sensor reading and their large-scale accessibility as point-of-care diagnostic and continuous health monitoring devices, in altered illumination conditions.

Original languageEnglish
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Fingerprint

Dive into the research topics of 'Colorimetric Sensor Reading and Illumination Correction via Multi-Task Deep-Learning'. Together they form a unique fingerprint.

Cite this