Collaborative programming of conditional robot tasks

Christoph Willibald, Thomas Eiband, Dongheui Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Conventional robot programming methods are not suited for non-experts to intuitively teach robots new tasks. For this reason, the potential of collaborative robots for production cannot yet be fully exploited. In this work, we propose an active learning framework, in which the robot and the user collaborate to incrementally program a complex task. Starting with a basic model, the robot's task knowledge can be extended over time if new situations require additional skills. An on-line anomaly detection algorithm therefore automatically identifies new situations during task execution by monitoring the deviation between measured- and commanded sensor values. The robot then triggers a teaching phase, in which the user decides to either refine an existing skill or demonstrate a new skill. The different skills of a task are encoded in separate probabilistic models and structured in a high-level graph, guaranteeing robust execution and successful transition between skills. In the experiments, our approach is compared to two state-of-the-art Programming by Demonstration frameworks on a real system. Increased intuitiveness and task performance of the method can be shown, allowing shop-floor workers to program industrial tasks with our framework.

Original languageEnglish
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5402-5409
Number of pages8
ISBN (Electronic)9781728162126
DOIs
StatePublished - 24 Oct 2020
Externally publishedYes
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: 24 Oct 202024 Jan 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Country/TerritoryUnited States
CityLas Vegas
Period24/10/2024/01/21

Fingerprint

Dive into the research topics of 'Collaborative programming of conditional robot tasks'. Together they form a unique fingerprint.

Cite this