TY - JOUR
T1 - Coherent and Purcell-Enhanced Emission from Erbium Dopants in a Cryogenic High- Q Resonator
AU - Merkel, Benjamin
AU - Ulanowski, Alexander
AU - Reiserer, Andreas
N1 - Publisher Copyright:
© 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.
PY - 2020/11/4
Y1 - 2020/11/4
N2 - The stability and outstanding coherence of dopants and other atomlike defects in tailored host crystals make them a leading platform for the implementation of distributed quantum information processing and sensing in quantum networks. Albeit the required efficient light-matter coupling can be achieved via the integration into nanoscale resonators, in this approach the proximity of interfaces is detrimental to the coherence of even the least-sensitive emitters. Here, we establish an alternative: By integrating a 19 μm thin crystal into a cryogenic Fabry-Perot resonator with a quality factor of 9×106, we achieve a two-level Purcell factor of 530(50). In our specific system, erbium-doped yttrium orthosilicate, this leads to a 59(6)-fold enhancement of the emission rate with an out-coupling efficiency of 46(8)%. At the same time, we demonstrate that the emitter properties are not degraded in our approach. We thus observe ensemble-averaged optical coherence up to 0.54(1) ms, which exceeds the 0.19(2) ms lifetime of dopants at the cavity field maximum. While our approach is also applicable to other solid-state quantum emitters, such as color centers in diamond, our system emits at the minimal-loss wavelength of optical fibers and thus enables coherent and efficient nodes for long-distance quantum networks.
AB - The stability and outstanding coherence of dopants and other atomlike defects in tailored host crystals make them a leading platform for the implementation of distributed quantum information processing and sensing in quantum networks. Albeit the required efficient light-matter coupling can be achieved via the integration into nanoscale resonators, in this approach the proximity of interfaces is detrimental to the coherence of even the least-sensitive emitters. Here, we establish an alternative: By integrating a 19 μm thin crystal into a cryogenic Fabry-Perot resonator with a quality factor of 9×106, we achieve a two-level Purcell factor of 530(50). In our specific system, erbium-doped yttrium orthosilicate, this leads to a 59(6)-fold enhancement of the emission rate with an out-coupling efficiency of 46(8)%. At the same time, we demonstrate that the emitter properties are not degraded in our approach. We thus observe ensemble-averaged optical coherence up to 0.54(1) ms, which exceeds the 0.19(2) ms lifetime of dopants at the cavity field maximum. While our approach is also applicable to other solid-state quantum emitters, such as color centers in diamond, our system emits at the minimal-loss wavelength of optical fibers and thus enables coherent and efficient nodes for long-distance quantum networks.
UR - http://www.scopus.com/inward/record.url?scp=85096096314&partnerID=8YFLogxK
U2 - 10.1103/PhysRevX.10.041025
DO - 10.1103/PhysRevX.10.041025
M3 - Article
AN - SCOPUS:85096096314
SN - 2160-3308
VL - 10
JO - Physical Review X
JF - Physical Review X
IS - 4
M1 - 041025
ER -