TY - GEN
T1 - Codification mechanisms of wrist position sense
AU - Marini, Francesca
AU - Contu, Sara
AU - Morasso, Pietro
AU - Masia, Lorenzo
AU - Zenzeri, Jacopo
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/11
Y1 - 2017/8/11
N2 - Proprioceptive signals from cutaneous, joint, tendon and muscle receptors create the basis for bodily perception and are known to be essential for motor control. However, which are the mechanisms underlying the proprioceptive signals and which are the variables that affect them is still a matter of debate. In particular, what is worth to investigate is, namely, the codification of proprioceptive information related to pointing movements of the wrist towards kinesthetic targets. In this work we asked 10 healthy adults to perform with their wrist a robot-aided proprioceptive matching task, in which the starting position of the matching movements was shifted forward or backward, in order to ascertain to which extent such shifts cause target over/under estimation and how important is movement's length on task performance. Results indicate that accuracy and precision of performance are highly correlated with the starting position and targets tended to be undershot when the active matching movements were longer. Moreover, further analysis revealed a consistent decrement of movement speed for shorter movements and conversely, faster displacement in case of backward of starting position.
AB - Proprioceptive signals from cutaneous, joint, tendon and muscle receptors create the basis for bodily perception and are known to be essential for motor control. However, which are the mechanisms underlying the proprioceptive signals and which are the variables that affect them is still a matter of debate. In particular, what is worth to investigate is, namely, the codification of proprioceptive information related to pointing movements of the wrist towards kinesthetic targets. In this work we asked 10 healthy adults to perform with their wrist a robot-aided proprioceptive matching task, in which the starting position of the matching movements was shifted forward or backward, in order to ascertain to which extent such shifts cause target over/under estimation and how important is movement's length on task performance. Results indicate that accuracy and precision of performance are highly correlated with the starting position and targets tended to be undershot when the active matching movements were longer. Moreover, further analysis revealed a consistent decrement of movement speed for shorter movements and conversely, faster displacement in case of backward of starting position.
UR - http://www.scopus.com/inward/record.url?scp=85034853510&partnerID=8YFLogxK
U2 - 10.1109/ICORR.2017.8009219
DO - 10.1109/ICORR.2017.8009219
M3 - Conference contribution
C2 - 28813791
AN - SCOPUS:85034853510
T3 - IEEE International Conference on Rehabilitation Robotics
SP - 44
EP - 49
BT - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
A2 - Ajoudani, Arash
A2 - Artemiadis, Panagiotis
A2 - Beckerle, Philipp
A2 - Grioli, Giorgio
A2 - Lambercy, Olivier
A2 - Mombaur, Katja
A2 - Novak, Domen
A2 - Rauter, Georg
A2 - Rodriguez Guerrero, Carlos
A2 - Salvietti, Gionata
A2 - Amirabdollahian, Farshid
A2 - Balasubramanian, Sivakumar
A2 - Castellini, Claudio
A2 - Di Pino, Giovanni
A2 - Guo, Zhao
A2 - Hughes, Charmayne
A2 - Iida, Fumiya
A2 - Lenzi, Tommaso
A2 - Ruffaldi, Emanuele
A2 - Sergi, Fabrizio
A2 - Soh, Gim Song
A2 - Caimmi, Marco
A2 - Cappello, Leonardo
A2 - Carloni, Raffaella
A2 - Carlson, Tom
A2 - Casadio, Maura
A2 - Coscia, Martina
A2 - De Santis, Dalia
A2 - Forner-Cordero, Arturo
A2 - Howard, Matthew
A2 - Piovesan, Davide
A2 - Siqueira, Adriano
A2 - Sup, Frank
A2 - Lorenzo, Masia
A2 - Catalano, Manuel Giuseppe
A2 - Lee, Hyunglae
A2 - Menon, Carlo
A2 - Raspopovic, Stanisa
A2 - Rastgaar, Mo
A2 - Ronsse, Renaud
A2 - van Asseldonk, Edwin
A2 - Vanderborght, Bram
A2 - Venkadesan, Madhusudhan
A2 - Bianchi, Matteo
A2 - Braun, David
A2 - Godfrey, Sasha Blue
A2 - Mastrogiovanni, Fulvio
A2 - McDaid, Andrew
A2 - Rossi, Stefano
A2 - Zenzeri, Jacopo
A2 - Formica, Domenico
A2 - Karavas, Nikolaos
A2 - Marchal-Crespo, Laura
A2 - Reed, Kyle B.
A2 - Tagliamonte, Nevio Luigi
A2 - Burdet, Etienne
A2 - Basteris, Angelo
A2 - Campolo, Domenico
A2 - Deshpande, Ashish
A2 - Dubey, Venketesh
A2 - Hussain, Asif
A2 - Sanguineti, Vittorio
A2 - Unal, Ramazan
A2 - Caurin, Glauco Augusto de Paula
A2 - Koike, Yasuharu
A2 - Mazzoleni, Stefano
A2 - Park, Hyung-Soon
A2 - Remy, C. David
A2 - Saint-Bauzel, Ludovic
A2 - Tsagarakis, Nikos
A2 - Veneman, Jan
A2 - Zhang, Wenlong
PB - IEEE Computer Society
T2 - 2017 International Conference on Rehabilitation Robotics, ICORR 2017
Y2 - 17 July 2017 through 20 July 2017
ER -