CoBayes: Bayesian knowledge corroboration with assessors of unknown areas of expertise

Gjergji Kasneci, Jurgen Van Gael, David Stern, Thore Graepel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

35 Scopus citations

Abstract

Our work aims at building probabilistic tools for constructing and maintaining large-scale knowledge bases containing entity-relationship-entity triples (statements) extracted from the Web. In order to mitigate the uncertainty inherent in information extraction and integration we propose leveraging the "wisdom of the crowds" by aggregating truth assessments that users provide about statements. The suggested method, CoBayes, operates on a collection of statements, a set of deduction rules (e.g. transitivity), a set of users, and a set of truth assessments of users about statements. We propose a joint probabilistic model of the truth values of statements and the expertise of users for assessing statements. The truth values of statements are interconnected through derivations based on the deduction rules. The correctness of a user's assessment for a given statement is modeled by linear mappings from user descriptions and statement descriptions into a common latent knowledge space where the inner product between user and statement vectors determines the probability that the user assessment for that statement will be correct. Bayesian inference in this complex graphical model is performed using mixed variational and expectation propagation message passing. We demonstrate the viability of CoBayes in comparison to other approaches, on realworld datasets and user feedback collected from Amazon Mechanical Turk.

Original languageEnglish
Title of host publicationProceedings of the 4th ACM International Conference on Web Search and Data Mining, WSDM 2011
Pages465-474
Number of pages10
DOIs
StatePublished - 2011
Externally publishedYes
Event4th ACM International Conference on Web Search and Data Mining, WSDM 2011 - Hong Kong, China
Duration: 9 Feb 201112 Feb 2011

Publication series

NameProceedings of the 4th ACM International Conference on Web Search and Data Mining, WSDM 2011

Conference

Conference4th ACM International Conference on Web Search and Data Mining, WSDM 2011
Country/TerritoryChina
CityHong Kong
Period9/02/1112/02/11

Keywords

  • Bayesian
  • Expertise
  • Feedback
  • Knowledge
  • Model
  • User

Fingerprint

Dive into the research topics of 'CoBayes: Bayesian knowledge corroboration with assessors of unknown areas of expertise'. Together they form a unique fingerprint.

Cite this