TY - GEN
T1 - CNN-Based Heart Sound Classification with an Imbalance-Compensating Weighted Loss Function
AU - Li, Zishen
AU - Chang, Yi
AU - Schuller, Bjorn W.
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Heart sound auscultation is an effective method for early-stage diagnosis of heart disease. The application of deep neural networks is gaining increasing attention in automated heart sound classification. This paper proposes deep Convolutional Neural Networks (CNNs) to classify normal/abnormal heart sounds, which takes two-dimensional Mel-scale features as input, including Mel frequency cepstral coefficients (MFCCs) and the Log Mel spectrum. We employ two weighted loss functions during the training to mitigate the class imbalance issue. The model was developed on the public PhysioNet/Computing in Cardiology Challenge (CinC) 2016 heart sound database. On the considered test set, the proposed model with Log Mel spectrum as features achieves an Unweighted Average Recall (UAR) of 89.6%, with sensitivity and specificity being 89.5% and 89.7% respectively. This work proposes a CNN-based model to enable automated heart sound classification, which can provide auxiliary assistance for heart auscultation and has the potential to screen for heart pathologies in clinical applications at a relatively low cost.
AB - Heart sound auscultation is an effective method for early-stage diagnosis of heart disease. The application of deep neural networks is gaining increasing attention in automated heart sound classification. This paper proposes deep Convolutional Neural Networks (CNNs) to classify normal/abnormal heart sounds, which takes two-dimensional Mel-scale features as input, including Mel frequency cepstral coefficients (MFCCs) and the Log Mel spectrum. We employ two weighted loss functions during the training to mitigate the class imbalance issue. The model was developed on the public PhysioNet/Computing in Cardiology Challenge (CinC) 2016 heart sound database. On the considered test set, the proposed model with Log Mel spectrum as features achieves an Unweighted Average Recall (UAR) of 89.6%, with sensitivity and specificity being 89.5% and 89.7% respectively. This work proposes a CNN-based model to enable automated heart sound classification, which can provide auxiliary assistance for heart auscultation and has the potential to screen for heart pathologies in clinical applications at a relatively low cost.
UR - http://www.scopus.com/inward/record.url?scp=85138126938&partnerID=8YFLogxK
U2 - 10.1109/EMBC48229.2022.9871904
DO - 10.1109/EMBC48229.2022.9871904
M3 - Conference contribution
C2 - 36085939
AN - SCOPUS:85138126938
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 4934
EP - 4937
BT - 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Y2 - 11 July 2022 through 15 July 2022
ER -