Clustering Disease Trajectories in Contrastive Feature Space for Biomarker Proposal in Age-Related Macular Degeneration

Robbie Holland, Oliver Leingang, Christopher Holmes, Philipp Anders, Rebecca Kaye, Sophie Riedl, Johannes C. Paetzold, Ivan Ezhov, Hrvoje Bogunović, Ursula Schmidt-Erfurth, Hendrik P.N. Scholl, Sobha Sivaprasad, Andrew J. Lotery, Daniel Rueckert, Martin J. Menten

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Current grading systems based on imaging biomarkers only coarsely group disease stages into broad categories that lack prognostic value for future disease progression. It is widely believed that this is due to their focus on a single point in time, disregarding the dynamic nature of the disease. In this work, we present the first method to automatically propose biomarkers that capture temporal dynamics of disease progression. Our method represents patient time series as trajectories in a latent feature space built with contrastive learning. Then, individual trajectories are partitioned into atomic sub-sequences that encode transitions between disease states. These are clustered using a newly introduced distance metric. In quantitative experiments we found our method yields temporal biomarkers that are predictive of conversion to late AMD. Furthermore, these clusters were highly interpretable to ophthalmologists who confirmed that many of the clusters represent dynamics that have previously been linked to the progression of AMD, even though they are currently not included in any clinical grading system.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Pages724-734
Number of pages11
ISBN (Print)9783031439896
DOIs
StatePublished - 2023
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14226 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/2312/10/23

Keywords

  • Age-related macular degeneration
  • Biomarker discovery
  • Clustering
  • Contrastive learning
  • Disease trajectories

Fingerprint

Dive into the research topics of 'Clustering Disease Trajectories in Contrastive Feature Space for Biomarker Proposal in Age-Related Macular Degeneration'. Together they form a unique fingerprint.

Cite this