Closed-loop coupling of a dynamic wake model with a wind inflow estimator

J. Di Cave, R. Braunbehrens, J. Krause, A. Guilloré, C. L. Bottasso

Research output: Contribution to journalConference articlepeer-review


The estimation of turbine flow evolution provided by low-fidelity dynamic wake models, such as FLORIDyn, can be improved by the introduction of a Kalman filter based on power production measurements. However, it is not possible to infer any information about which side of an impinged rotor is affected by the wake only by the observed power, being itself a single scalar quantity. In this paper, a new closed-loop formulation of the FLORIDyn model is investigated: wind speed estimates, given by a blade load-based wind observer, are implemented into a Kalman Filter, providing information about the position of the wake over the rotor plane. The FLORIDyn model augmented with the wind flow estimator is tested in a layout of two aligned turbines and compared to a corresponding CFD simulation. The results of the proposed approach show an improved ability to predict wind flow quantities and the wake centerline position compared to the open-loop version of the model.

Original languageEnglish
Article number032034
JournalJournal of Physics: Conference Series
Issue number3
StatePublished - 2024
Event2024 Science of Making Torque from Wind, TORQUE 2024 - Florence, Italy
Duration: 29 May 202431 May 2024


Dive into the research topics of 'Closed-loop coupling of a dynamic wake model with a wind inflow estimator'. Together they form a unique fingerprint.

Cite this