TY - GEN
T1 - Closed-form inverse kinematics for intra-operative mobile C-arm positioning with six degrees of freedom
AU - Wang, Lejing
AU - Zou, Rui
AU - Weidert, Simon
AU - Landes, Juergen
AU - Euler, Ekkehard
AU - Burschka, Darius
AU - Navab, Nassir
PY - 2011
Y1 - 2011
N2 - For trauma and orthopedic surgery, maneuvering a mobile C-arm X-ray device into a desired position in order to acquire the right picture is a routine task. The precision and ease of use of the C-arm positioning becomes even more important for more advanced imaging techniques as parallax-free X-ray image stitching, for example. Standard mobile C-arms have only five degrees of freedom (DOF), which definitely restricts their motions that have six DOF in 3D Cartesian space. We have proposed a method to model the kinematics of the mobile Carm and operating table as an integrated 6DOF C-arm X-ray imaging system.1 This enables mobile C-arms to be positioned relative to the patient's table with six DOF in 3D Cartesian space. Moving mobile C-arms to a desired position and orientation requires finding the necessary joint values, which is an inverse kinematics problem. In this paper, we present closed-form solutions, i.e. analytic expressions, obtained in an algebraic way for the inverse kinematics problem of the 6DOF C-arm model. In addition, we implement a 6DOF C-arm system for interactively radiation-free C-arm positioning based on a continuous guidance from C-arm pose estimation. For this we employ a visual marker pattern attached under the operating table and a mobile C-arm system augmented by a video camera and mirror construction. In our experiment, repositioning C-arm to a pre-defined pose in a phantom study demonstrates the practicality and accuracy of our developed 6DOF C-arm system.
AB - For trauma and orthopedic surgery, maneuvering a mobile C-arm X-ray device into a desired position in order to acquire the right picture is a routine task. The precision and ease of use of the C-arm positioning becomes even more important for more advanced imaging techniques as parallax-free X-ray image stitching, for example. Standard mobile C-arms have only five degrees of freedom (DOF), which definitely restricts their motions that have six DOF in 3D Cartesian space. We have proposed a method to model the kinematics of the mobile Carm and operating table as an integrated 6DOF C-arm X-ray imaging system.1 This enables mobile C-arms to be positioned relative to the patient's table with six DOF in 3D Cartesian space. Moving mobile C-arms to a desired position and orientation requires finding the necessary joint values, which is an inverse kinematics problem. In this paper, we present closed-form solutions, i.e. analytic expressions, obtained in an algebraic way for the inverse kinematics problem of the 6DOF C-arm model. In addition, we implement a 6DOF C-arm system for interactively radiation-free C-arm positioning based on a continuous guidance from C-arm pose estimation. For this we employ a visual marker pattern attached under the operating table and a mobile C-arm system augmented by a video camera and mirror construction. In our experiment, repositioning C-arm to a pre-defined pose in a phantom study demonstrates the practicality and accuracy of our developed 6DOF C-arm system.
KW - C-arm positioning
KW - Camera augmented mobile C-arm
KW - Closed-form solution
KW - Computer aided intervention
KW - Inverse kinematics
UR - http://www.scopus.com/inward/record.url?scp=79955871484&partnerID=8YFLogxK
U2 - 10.1117/12.877835
DO - 10.1117/12.877835
M3 - Conference contribution
AN - SCOPUS:79955871484
SN - 9780819485069
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2011
T2 - Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling
Y2 - 13 February 2011 through 15 February 2011
ER -