Climate change accelerates ecosystem restoration in the mountain forests of Central Europe

Christina Dollinger, Werner Rammer, Rupert Seidl

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Restoring degraded forest ecosystems is an important element in the ongoing challenge to sustain the integrity and functioning of the biosphere. However, the evaluation of restoration success is hampered by long lead times of management measures in forests. Moreover, forest change is accelerating also in the absence of management because of ongoing climate change. Yet, because a counterfactual is frequently missing, it remains unclear whether restoration measures are aided or impeded by climate change. Here, we analysed the pace and success of forest restoration under climate change, combining field data and simulation modelling. We focused on the management zone of Berchtesgaden National Park (BGNP), Germany, where restoration aims to restore homogeneous Norway spruce (Picea abies) forests to structurally diverse mixed mountain forests. We evaluated three alternative restoration strategies: Two active strategies focused on planting the currently underrepresented silver fir (Abies alba) and European beech (Fagus sylvatica) but differing in the creation of gap-cuts, and a third passive restoration strategy without interventions. Strategies were simulated with the forest landscape model iLand from 2020 to 2100 under different climate scenarios (historic, RCP 2.6, 4.5, and 8.5). The forests of BGNP developed into structurally diverse and mixed forests under all evaluated management strategies, and differences between active and passive restoration were generally small. While restoration goals for forest structure were largely met by 2100, forest composition remained far from target in all strategies. Climate change aided restoration by significantly increasing the prevalence of silver fir and European beech (+104.2% to +258.6%). Field data on short-term restoration effects were in line with simulated long-term trajectories. Synthesis and applications: We here show that forest restoration efforts in Central European mountain forests will likely be accelerated by climate change. Nonetheless, the slow pace of restoration underscores the need for taking action. Our study highlights that active restoration measures such as tree planting can bring the system closer to restoration targets. However, it also demonstrates that passive restoration (no intervention) is a viable option for management, highlighting the need to evaluate restoration measures against the counterfactual of a no intervention strategy.

Original languageEnglish
Pages (from-to)2665-2675
Number of pages11
JournalJournal of Applied Ecology
Volume60
Issue number12
DOIs
StatePublished - Dec 2023

Keywords

  • active restoration
  • climate change impacts
  • disturbance ecology
  • forest management
  • passive restoration
  • protected areas
  • simulation modelling
  • tree planting

Fingerprint

Dive into the research topics of 'Climate change accelerates ecosystem restoration in the mountain forests of Central Europe'. Together they form a unique fingerprint.

Cite this