Classification, Regression and Segmentation Directly from K-Space in Cardiac MRI

Ruochen Li, Jiazhen Pan, Youxiang Zhu, Juncheng Ni, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Cardiac Magnetic Resonance Imaging (CMR) is the gold standard for diagnosing cardiovascular diseases. Clinical diagnoses predominantly rely on magnitude-only Digital Imaging and Communications in Medicine (DICOM) images, omitting crucial phase information that might provide additional diagnostic benefits. In contrast, k-space is complex-valued and encompasses both magnitude and phase information, while humans cannot directly perceive. In this work, we propose KMAE, a Transformer-based model specifically designed to process k-space data directly, eliminating conventional intermediary conversion steps to the image domain. KMAE can handle critical cardiac disease classification, relevant phenotype regression, and cardiac morphology segmentation tasks. We utilize this model to investigate the potential of k-space-based diagnosis in cardiac MRI. Notably, this model achieves competitive classification and regression performance compared to image-domain methods e.g. Masked Autoencoders (MAEs) and delivers satisfactory segmentation performance with a myocardium dice score of 0.884. Last but not least, our model exhibits robust performance with consistent results even when the k-space is 8× undersampled. We encourage the MR community to explore the untapped potential of k-space and pursue end-to-end, automated diagnosis with reduced human intervention. Codes are available at https://github.com/ruochenli99/KMAE_cardiac.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 15th International Workshop, MLMI 2024, Held in Conjunction with MICCAI 2024, Proceedings
EditorsXuanang Xu, Zhiming Cui, Kaicong Sun, Islem Rekik, Xi Ouyang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages31-41
Number of pages11
ISBN (Print)9783031732836
DOIs
StatePublished - 2025
Event15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 20246 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15241 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Workshop on Machine Learning in Medical Imaging, MLMI 2024 was held in conjunction with the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/246/10/24

Fingerprint

Dive into the research topics of 'Classification, Regression and Segmentation Directly from K-Space in Cardiac MRI'. Together they form a unique fingerprint.

Cite this