Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks

Alexander Craik, Atilla Kilicarslan, Jose L. Contreras-Vidal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

The reliable classification of Electroencephalography (EEG) signals is a crucial step towards making EEG-controlled non-invasive neuro-exoskeleton rehabilitation a practical reality. EEG signals collected during motor imagery tasks have been proposed to act as a control signal for exoskeleton applications. Here, a Deep Convolutional Neural Network (DCNN) was optimized to classify a two-class kinesthetic motor imagery EEG dataset, leading to an optimized architecture consisting of four convolutional layers and three fully connected layers. Transfer learning, or the leveraging of data from past subjects to classify the intentions of a new subject, is important for rehabilitation as it helps to minimize the number of training sessions required from subjects who lack full motor functionality. The transfer learning training paradigm investigated through this study utilized region criticality trends to reduce the number of new subject training sessions and increase the classification performance when compared against a single-subject non-transfer-learning classifier.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3046-3049
Number of pages4
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Externally publishedYes
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 23 Jul 201927 Jul 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period23/07/1927/07/19

Fingerprint

Dive into the research topics of 'Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks'. Together they form a unique fingerprint.

Cite this