Classical Prethermal Phases of Matter ()

Andrea Pizzi, Andreas Nunnenkamp, Johannes Knolle

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Systems subject to a high-frequency drive can spend an exponentially long time in a prethermal regime, in which novel phases of matter with no equilibrium counterpart can be realized. Because of the notorious computational challenges of quantum many-body systems, numerical investigations in this direction have remained limited to one spatial dimension, in which long-range interactions have been proven a necessity. Here, we show that prethermal nonequilibrium phases of matter are not restricted to the quantum domain. Studying the Hamiltonian dynamics of a large three-dimensional lattice of classical spins, we provide the first numerical proof of prethermal phases of matter in a system with short-range interactions. Concretely, we find higher-order as well as fractional discrete time crystals breaking the time-translational symmetry of the drive with unexpectedly large integer as well as fractional periods. Our work paves the way toward the exploration of novel prethermal phenomena by means of classical Hamiltonian dynamics with virtually no limitations on the system’s geometry or size, and thus with direct implications for experiments.

Original languageEnglish
Article number140602
JournalPhysical Review Letters
Volume127
Issue number14
DOIs
StatePublished - 1 Oct 2021

Fingerprint

Dive into the research topics of 'Classical Prethermal Phases of Matter ()'. Together they form a unique fingerprint.

Cite this