TY - GEN
T1 - Circuit quantum electrodynamic model of a resonantly phase-matched Josephson traveling wave parametric amplifier
AU - Haider, Michael
AU - Yuan, Yongjie
AU - Patino, Jesus Abundis
AU - Russer, Johannes A.
AU - Russer, Peter
AU - Jirauschek, Christian
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/6
Y1 - 2019/6
N2 - In recent years Josephson-junction-based parametric amplifiers have been developed for single-photon-level signals in the microwave spectral region, where they found applications in quantum information processing. Typically, Josephson traveling wave parametric amplifiers (JTWPA) have been studied based on classical circuit models. Although this approach shows good agreement with experimental results, it describes the system behavior in the framework of a classical theory, neglecting the quantum nature of the device. A quantum mechanical treatment of the JTWPA was only given in a few recent papers, where [1] derives a Hamiltonian for a chain of unit cells without resonant phase-matching (RPM), and [2] solves the dynamics of the system with and without RPM, also partly considering noise and squeezed state generation. However, our approach differs from [2] in that we give an explicit solution to the resulting nonlinear wave equation for narrow-band signals, starting from discrete chain Hamiltonians with and without RPM. We focus on describing the dynamics of the device in a noiseless quantum setting and present solutions for the governing nonlinear wave equation in Fig. 1. The starting point of this work is the amplifier design as given in [3]. The mathematical description relies on the Hamiltonian of a discrete chain of unit cells, which was derived in [1], and which we extended by a RPM circuit [2]. As the size ΔΙ of a single chain element is relatively small compared to the wavelength, the chain of discrete Josephson elements can be considered in terms of a continuous transmission line.
AB - In recent years Josephson-junction-based parametric amplifiers have been developed for single-photon-level signals in the microwave spectral region, where they found applications in quantum information processing. Typically, Josephson traveling wave parametric amplifiers (JTWPA) have been studied based on classical circuit models. Although this approach shows good agreement with experimental results, it describes the system behavior in the framework of a classical theory, neglecting the quantum nature of the device. A quantum mechanical treatment of the JTWPA was only given in a few recent papers, where [1] derives a Hamiltonian for a chain of unit cells without resonant phase-matching (RPM), and [2] solves the dynamics of the system with and without RPM, also partly considering noise and squeezed state generation. However, our approach differs from [2] in that we give an explicit solution to the resulting nonlinear wave equation for narrow-band signals, starting from discrete chain Hamiltonians with and without RPM. We focus on describing the dynamics of the device in a noiseless quantum setting and present solutions for the governing nonlinear wave equation in Fig. 1. The starting point of this work is the amplifier design as given in [3]. The mathematical description relies on the Hamiltonian of a discrete chain of unit cells, which was derived in [1], and which we extended by a RPM circuit [2]. As the size ΔΙ of a single chain element is relatively small compared to the wavelength, the chain of discrete Josephson elements can be considered in terms of a continuous transmission line.
UR - http://www.scopus.com/inward/record.url?scp=85074640002&partnerID=8YFLogxK
U2 - 10.1109/CLEOE-EQEC.2019.8871821
DO - 10.1109/CLEOE-EQEC.2019.8871821
M3 - Conference contribution
AN - SCOPUS:85074640002
T3 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
BT - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Y2 - 23 June 2019 through 27 June 2019
ER -