TY - GEN
T1 - CINA
T2 - 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
AU - Dannecker, Maik
AU - Kyriakopoulou, Vanessa
AU - Cordero-Grande, Lucilio
AU - Price, Anthony N.
AU - Hajnal, Joseph V.
AU - Rueckert, Daniel
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
PY - 2024
Y1 - 2024
N2 - We introduce a conditional implicit neural atlas (CINA) for spatio-temporal atlas generation from Magnetic Resonance Images (MRI) of the neurotypical and pathological fetal brain, that is fully independent of affine or non-rigid registration. During training, CINA learns a general representation of the fetal brain and encodes subject specific information into latent code. After training, CINA can construct a faithful atlas with tissue probability maps of the fetal brain for any gestational age (GA) and anatomical variation covered within the training domain. Thus, CINA is competent to represent both, neurotypical and pathological brains. Furthermore, a trained CINA model can be fit to brain MRI of unseen subjects via test-time optimization of the latent code. CINA can then produce probabilistic tissue maps tailored to a particular subject. We evaluate our method on a total of 198 T2 weighted MRI of normal and abnormal fetal brains from the dHCP and FeTA datasets. We demonstrate CINA’s capability to represent a fetal brain atlas that can be flexibly conditioned on GA and on anatomical variations like ventricular volume or degree of cortical folding, making it a suitable tool for modeling both neurotypical and pathological brains. We quantify the fidelity of our atlas by means of tissue segmentation and age prediction and compare it to an established baseline. CINA demonstrates superior accuracy for neurotypical brains and pathological brains with ventriculomegaly. Moreover, CINA scores a mean absolute error of 0.23 weeks in fetal brain age prediction, further confirming an accurate representation of fetal brain development.
AB - We introduce a conditional implicit neural atlas (CINA) for spatio-temporal atlas generation from Magnetic Resonance Images (MRI) of the neurotypical and pathological fetal brain, that is fully independent of affine or non-rigid registration. During training, CINA learns a general representation of the fetal brain and encodes subject specific information into latent code. After training, CINA can construct a faithful atlas with tissue probability maps of the fetal brain for any gestational age (GA) and anatomical variation covered within the training domain. Thus, CINA is competent to represent both, neurotypical and pathological brains. Furthermore, a trained CINA model can be fit to brain MRI of unseen subjects via test-time optimization of the latent code. CINA can then produce probabilistic tissue maps tailored to a particular subject. We evaluate our method on a total of 198 T2 weighted MRI of normal and abnormal fetal brains from the dHCP and FeTA datasets. We demonstrate CINA’s capability to represent a fetal brain atlas that can be flexibly conditioned on GA and on anatomical variations like ventricular volume or degree of cortical folding, making it a suitable tool for modeling both neurotypical and pathological brains. We quantify the fidelity of our atlas by means of tissue segmentation and age prediction and compare it to an established baseline. CINA demonstrates superior accuracy for neurotypical brains and pathological brains with ventriculomegaly. Moreover, CINA scores a mean absolute error of 0.23 weeks in fetal brain age prediction, further confirming an accurate representation of fetal brain development.
UR - http://www.scopus.com/inward/record.url?scp=85210081322&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-72114-4_18
DO - 10.1007/978-3-031-72114-4_18
M3 - Conference contribution
AN - SCOPUS:85210081322
SN - 9783031721137
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 181
EP - 191
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2024, 27th International Conference Proceedings
A2 - Linguraru, Marius George
A2 - Dou, Qi
A2 - Feragen, Aasa
A2 - Giannarou, Stamatia
A2 - Glocker, Ben
A2 - Lekadir, Karim
A2 - Schnabel, Julia A.
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 6 October 2024 through 10 October 2024
ER -