Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications

J. Riesch, H. Gietl, G. Holzner, T. Höschen, M. Li, R. Neu

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W) utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD) of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.

Original languageEnglish
Pages (from-to)75-83
Number of pages9
JournalNuclear Materials and Energy
Volume9
DOIs
StatePublished - 1 Dec 2016
Externally publishedYes

Keywords

  • Chemical vapour deposition
  • Divertor
  • Fibre-reinforced composite
  • Mock-up
  • Tungsten

Fingerprint

Dive into the research topics of 'Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications'. Together they form a unique fingerprint.

Cite this