Characterization of Reversibly Switchable Fluorescent Proteins in Optoacoustic Imaging

Paul Vetschera, Kanuj Mishra, Juan Pablo Fuenzalida-Werner, Andriy Chmyrov, Vasilis Ntziachristos, Andre C. Stiel

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Reversibly switchable fluorescent proteins (rsFPs) have had a revolutionizing effect on life science imaging due to their contribution to sub-diffraction-resolution optical microscopy (nanoscopy). Initial studies showed that their use as labels could also be highly beneficial for emerging photo- or optoacoustic imaging. It could be shown that their use in optoacoustics (i) strongly improves the imaging contrast-to-noise ratio due to modulation and locked-in detection, (ii) facilitates fluence calibration, affording precise measurements of physiological parameters, and finally (iii) could boost spatial resolution following similar concepts as used for nanoscopy. However, rsFPs show different photophysical behavior in optoacoustics than in optical microscopy because optoacoustics requires pulsed illumination and depends on signal generation via nonradiative energy decay channels. This implies that rsFPs optimized for fluorescence imaging may not be ideal for optoacoustics. Here, we analyze the photophysical behavior of a broad range of rsFPs with optoacoustics and analyze how the experimental factors central to optoacoustic imaging influence the different types of rsFPs. Finally, we discuss how knowledge of the switching behavior can be exploited for various optoacoustic imaging approaches using sophisticated temporal unmixing schemes.

Original languageEnglish
Pages (from-to)10527-10535
Number of pages9
JournalAnalytical Chemistry
Volume90
Issue number17
DOIs
StatePublished - 4 Sep 2018

Fingerprint

Dive into the research topics of 'Characterization of Reversibly Switchable Fluorescent Proteins in Optoacoustic Imaging'. Together they form a unique fingerprint.

Cite this