TY - JOUR
T1 - Changes in the Abundance of Grassland Species in Monocultures versus Mixtures and Their Relation to Biodiversity Effects
AU - Marquard, Elisabeth
AU - Schmid, Bernhard
AU - Roscher, Christiane
AU - De Luca, Enrica
AU - Nadrowski, Karin
AU - Weisser, Wolfgang W.
AU - Weigelt, Alexandra
N1 - Funding Information:
All samples were taken on the field site of the Jena Experiment. This field site is a former arable land which the research group (represented by the University of Jena) rented from the land owner for the duration of the research grant. The land owner gave the permission to conduct this study on this site. No specific permissions were required for the field work and the data collection that the current manuscript is based on. The field studies did not involve endangered or protected species.
PY - 2013/9/30
Y1 - 2013/9/30
N2 - Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species' populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64-217 g per m2. Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.
AB - Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species' populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64-217 g per m2. Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.
UR - http://www.scopus.com/inward/record.url?scp=84884768230&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0075599
DO - 10.1371/journal.pone.0075599
M3 - Article
C2 - 24098704
AN - SCOPUS:84884768230
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 9
M1 - e75599
ER -