TY - JOUR
T1 - Challenges and Opportunities in Composite Cathode Production of Polymer-Based Solid-State Batteries
AU - Dhom, Jonas
AU - Röß-Ohlenroth, Richard
AU - Stumper, Benedikt
AU - Berger, Christoph
AU - Daub, Rüdiger
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024
Y1 - 2024
N2 - Higher energy densities and a high level of safety are decisive for the energy storage systems of electric vehicles to satisfy the high range requirements. The polymer-based solid-state battery is a promising technology that stands out due to its high energy density and theoretical safety advantages. Research into this innovative battery technology in Germany and Europe mainly focuses on the laboratory scale. For the production of polymer-based solid-state batteries, there is a lack of accessible information to transfer the laboratory scale to pilot production. Therefore, competence in upscaling the polymer-based composite cathode is essential. The current work investigates the cause-effect relationships of individual production processes of the polymer-based composite cathode in order to establish an in-depth understanding of how they can be scaled. In particular, mixing, coating, and calendering are compared with the corresponding processes of the conventional electrode production of lithium-ion battery cells to identify similarities and differences. The comparison demonstrates that the calendering process is particularly challenging due to the minimization of the porosity of the polymer-based composite cathode. For this reason, the challenges of calendering are discussed in detail. An existing empirical model of the calendering of lithium metal is used to enhance the comprehension of the calendering process. This results in a reduced material consumption and experimental setup time. By using a temporary foil to protect the calender rollers from the high adhesion, polymer-based composite cathodes can be calendered with a conventional roll-to-roll process. The results provide first informations of the scalability of the process of polymer-based composite cathodes from laboratory-based work to a larger scale.
AB - Higher energy densities and a high level of safety are decisive for the energy storage systems of electric vehicles to satisfy the high range requirements. The polymer-based solid-state battery is a promising technology that stands out due to its high energy density and theoretical safety advantages. Research into this innovative battery technology in Germany and Europe mainly focuses on the laboratory scale. For the production of polymer-based solid-state batteries, there is a lack of accessible information to transfer the laboratory scale to pilot production. Therefore, competence in upscaling the polymer-based composite cathode is essential. The current work investigates the cause-effect relationships of individual production processes of the polymer-based composite cathode in order to establish an in-depth understanding of how they can be scaled. In particular, mixing, coating, and calendering are compared with the corresponding processes of the conventional electrode production of lithium-ion battery cells to identify similarities and differences. The comparison demonstrates that the calendering process is particularly challenging due to the minimization of the porosity of the polymer-based composite cathode. For this reason, the challenges of calendering are discussed in detail. An existing empirical model of the calendering of lithium metal is used to enhance the comprehension of the calendering process. This results in a reduced material consumption and experimental setup time. By using a temporary foil to protect the calender rollers from the high adhesion, polymer-based composite cathodes can be calendered with a conventional roll-to-roll process. The results provide first informations of the scalability of the process of polymer-based composite cathodes from laboratory-based work to a larger scale.
KW - calendering
KW - composite cathode
KW - concept
KW - empirical modeling
KW - porosity
KW - process
KW - solid-state battery
UR - http://www.scopus.com/inward/record.url?scp=85213071158&partnerID=8YFLogxK
U2 - 10.1016/j.procir.2024.10.112
DO - 10.1016/j.procir.2024.10.112
M3 - Conference article
AN - SCOPUS:85213071158
SN - 2405-8971
VL - 58
SP - 443
EP - 448
JO - IFAC Proceedings Volumes (IFAC-PapersOnline)
JF - IFAC Proceedings Volumes (IFAC-PapersOnline)
IS - 27
T2 - 18th IFAC Workshop on Time Delay Systems, TDS 2024
Y2 - 2 October 2023 through 5 October 2023
ER -