TY - JOUR
T1 - Certifiable robustness to graph perturbations
AU - Bojchevski, Aleksandar
AU - Günnemann, Stephan
N1 - Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Despite the exploding interest in graph neural networks there has been little effort to verify and improve their robustness. This is even more alarming given recent findings showing that they are extremely vulnerable to adversarial attacks on both the graph structure and the node attributes. We propose the first method for verifying certifiable (non-)robustness to graph perturbations for a general class of models that includes graph neural networks and label/feature propagation. By exploiting connections to PageRank and Markov decision processes our certificates can be efficiently (and under many threat models exactly) computed. Furthermore, we investigate robust training procedures that increase the number of certifiably robust nodes while maintaining or improving the clean predictive accuracy.
AB - Despite the exploding interest in graph neural networks there has been little effort to verify and improve their robustness. This is even more alarming given recent findings showing that they are extremely vulnerable to adversarial attacks on both the graph structure and the node attributes. We propose the first method for verifying certifiable (non-)robustness to graph perturbations for a general class of models that includes graph neural networks and label/feature propagation. By exploiting connections to PageRank and Markov decision processes our certificates can be efficiently (and under many threat models exactly) computed. Furthermore, we investigate robust training procedures that increase the number of certifiably robust nodes while maintaining or improving the clean predictive accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85086590654&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85086590654
SN - 1049-5258
VL - 32
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019
Y2 - 8 December 2019 through 14 December 2019
ER -