TY - GEN
T1 - CBAM-SAUNet
T2 - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
AU - Rajamani, Srividya Tirunellai
AU - Rajamani, Kumar
AU - Angeline, J.
AU - Karthika, R.
AU - Schuller, Björn W.
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - U-Net has been demonstrated to be effective for the task of medical image segmentation. Additionally, integrating attention mechanism into U-Net has been shown to yield significant benefits. The Shape Attentive U-Net (SAUNet) is one such recently proposed attention U-Net that also focuses on interpretability. Furthermore, recent research has focused on identification and reporting of corner cases in segmentation to accelerate the utilisation of deep learning models in clinical practise. However, achieving good model performance on such corner cases is a less-explored research area. In this paper, we propose CBAM-SAUNet which enhances the dual attention decoder block of SAUNet to improve its performance on corner cases. We achieve this by utilising a novel variant of the Convolutional Block Attention Module (CBAM)'s channel attention in the decoder block of SAUNet. We demonstrate the effectiveness of CBAM-SAUNet in the Automated Cardiac Diagnosis Challenge (ACDC) cardiac MRI segmentation challenge. Our proposed novel approach results in improvement in the Dice scores of 12% for Left Ventricle (LV) as well as Right Ventricle (RV) segmentation and 8% for Myocardium (MYO) for the identified corner-case dataset.
AB - U-Net has been demonstrated to be effective for the task of medical image segmentation. Additionally, integrating attention mechanism into U-Net has been shown to yield significant benefits. The Shape Attentive U-Net (SAUNet) is one such recently proposed attention U-Net that also focuses on interpretability. Furthermore, recent research has focused on identification and reporting of corner cases in segmentation to accelerate the utilisation of deep learning models in clinical practise. However, achieving good model performance on such corner cases is a less-explored research area. In this paper, we propose CBAM-SAUNet which enhances the dual attention decoder block of SAUNet to improve its performance on corner cases. We achieve this by utilising a novel variant of the Convolutional Block Attention Module (CBAM)'s channel attention in the decoder block of SAUNet. We demonstrate the effectiveness of CBAM-SAUNet in the Automated Cardiac Diagnosis Challenge (ACDC) cardiac MRI segmentation challenge. Our proposed novel approach results in improvement in the Dice scores of 12% for Left Ventricle (LV) as well as Right Ventricle (RV) segmentation and 8% for Myocardium (MYO) for the identified corner-case dataset.
UR - http://www.scopus.com/inward/record.url?scp=85214970463&partnerID=8YFLogxK
U2 - 10.1109/EMBC53108.2024.10782335
DO - 10.1109/EMBC53108.2024.10782335
M3 - Conference contribution
AN - SCOPUS:85214970463
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 15 July 2024 through 19 July 2024
ER -