TY - GEN
T1 - Castor
T2 - IEEE INFOCOM 2010
AU - Galuba, Wojciech
AU - Papadimitratos, Panos
AU - Poturalski, Marcin
AU - Aberer, Karl
AU - Despotovic, Zoran
AU - Kellerer, Wolfgang
PY - 2010
Y1 - 2010
N2 - Wireless ad hoc networks are inherently vulnerable, as any node can disrupt the communication of potentially any other node in the network. Many solutions to this problem have been proposed. In this paper, we take a fresh and comprehensive approach that addresses simultaneously three aspects: security, scalability and adaptability to changing network conditions. Our communication protocol, Castor, occupies a unique point in the design space: It does not use any control messages except simple packet acknowledgements, and each node makes routing decisions locally and independently without exchanging any routing state with other nodes. Its novel design makes Castor resilient to a wide range of attacks and allows the protocol to scale to large network sizes and to remain efficient under high mobility. We compare Castor against four representative protocols from the literature. Our protocol achieves up to two times higher packet delivery rates, particularly in large and highly volatile networks, while incurring no or only limited additional overhead. At the same time, Castor is able to survive more severe attacks and recovers from them faster.
AB - Wireless ad hoc networks are inherently vulnerable, as any node can disrupt the communication of potentially any other node in the network. Many solutions to this problem have been proposed. In this paper, we take a fresh and comprehensive approach that addresses simultaneously three aspects: security, scalability and adaptability to changing network conditions. Our communication protocol, Castor, occupies a unique point in the design space: It does not use any control messages except simple packet acknowledgements, and each node makes routing decisions locally and independently without exchanging any routing state with other nodes. Its novel design makes Castor resilient to a wide range of attacks and allows the protocol to scale to large network sizes and to remain efficient under high mobility. We compare Castor against four representative protocols from the literature. Our protocol achieves up to two times higher packet delivery rates, particularly in large and highly volatile networks, while incurring no or only limited additional overhead. At the same time, Castor is able to survive more severe attacks and recovers from them faster.
UR - http://www.scopus.com/inward/record.url?scp=77953316022&partnerID=8YFLogxK
U2 - 10.1109/INFCOM.2010.5462115
DO - 10.1109/INFCOM.2010.5462115
M3 - Conference contribution
AN - SCOPUS:77953316022
SN - 9781424458363
T3 - Proceedings - IEEE INFOCOM
BT - 2010 Proceedings IEEE INFOCOM
Y2 - 14 March 2010 through 19 March 2010
ER -