CASHformer: Cognition Aware SHape Transformer for Longitudinal Analysis

Ignacio Sarasua, Sebastian Pölsterl, Christian Wachinger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Modeling temporal changes in subcortical structures is crucial for a better understanding of the progression of Alzheimer’s disease (AD). Given their flexibility to adapt to heterogeneous sequence lengths, mesh-based transformer architectures have been proposed in the past for predicting hippocampus deformations across time. However, one of the main limitations of transformers is the large amount of trainable parameters, which makes the application on small datasets very challenging. In addition, current methods do not include relevant non-image information that can help to identify AD-related patterns in the progression. To this end, we introduce CASHformer, a transformer-based framework to model longitudinal shape trajectories in AD. CASHformer incorporates the idea of pre-trained transformers as universal compute engines that generalize across a wide range of tasks by freezing most layers during fine-tuning. This reduces the number of parameters by over 90% with respect to the original model and therefore enables the application of large models on small datasets without overfitting. In addition, CASHformer models cognitive decline to reveal AD atrophy patterns in the temporal sequence. Our results show that CASHformer reduces the reconstruction error by 73 % compared to previously proposed methods. Moreover, the accuracy of detecting patients progressing to AD increases by 3 % with imputing missing longitudinal shape data.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages44-54
Number of pages11
ISBN (Print)9783031164309
DOIs
StatePublished - 2022
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sep 202222 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13431 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Fingerprint

Dive into the research topics of 'CASHformer: Cognition Aware SHape Transformer for Longitudinal Analysis'. Together they form a unique fingerprint.

Cite this