Cardiac differentiation of human wharton's jelly stem cells - experimental comparison of protocols

Trixi Hollweck, Isabel Hartmann, Markus Eblenkamp, Erich Wintermantel, Bruno Reichart, Peter Überfuhr, Günther Eissner

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Cardiomyoplasty represents a promising approach for the repair of the injured heart, but is hampered by the availability of appropriate cells. Mesenchymal stem cells derived from the human umbilical cord tissue (UCMSC) can be obtained in large amounts without medical intervention, exhibit self renewal and immunological naivity as well as multipotency. In the present study, different published protocols of cardiac differentiation designed for different stem cell types were compared to differentiate UCMSC into cardiomyocyte-like cells (cUCMSC). Cardiac differentiation of UCMSC was driven by cell treatment with 5-azacytidine, oxytocin as well as by forming of "embryoid bodies". The morphological and immunocytochemical analysis of cUCMSC with an extensive panel of cardiac markers showed that oxytocin is a more potent inducer of cardiac differentiation than 5-azacytidine and the forming of "embryoid bodies". cUCMSC reveal a cardiomyocyte-like structure and the expression of cardiomyocyte associated proteins. The easy accessibility and the ability of UCMSC to differentiate into cells with characteristics of cardiomyocytes render UCMSC an attractive candidate for cell based therapies and cardiac tissue engineering.

Original languageEnglish
Pages (from-to)95-102
Number of pages8
JournalOpen Tissue Engineering and Regenerative Medicine Journal
Issue numberSPEC. ISSUE 1
StatePublished - 2011


  • Cardiac differentiation
  • Cardiac tissue engineering
  • Mesenchymal stem cells
  • Regenerative medicine
  • Umbilical cord


Dive into the research topics of 'Cardiac differentiation of human wharton's jelly stem cells - experimental comparison of protocols'. Together they form a unique fingerprint.

Cite this