TY - JOUR
T1 - Carbon pool and substitution effects of an increased use of wood in buildings in Switzerland
T2 - First estimates
AU - Werner, Frank
AU - Taverna, Ruedi
AU - Hofer, Peter
AU - Richter, Klaus
PY - 2005/12
Y1 - 2005/12
N2 - Long-living wood products can contribute to the mitigation of climate change in many ways. On the one hand, they act as a carbon pool during their service life, as they withdraw CO2 from its natural cycle. After their service life, they can substitute for fossil fuels if they are incinerated in adequate furnaces. On the other hand, wood products can substitute for more energy intense products made of 'conventional' materials. This paper quantifies the substitution and carbon pool effects of an increased use of wood in the building sector in Switzerland for the years 2000-2130. For this purpose, life cycle data on greenhouse gas (GHG) emissions of 12 wood products and their substitutes is used as proxies for the most important groups of building products used in construction and in interior works; this data is linked to the forecasted wood flows for each group of building products in a cohort-model. For the political assessment, GHG effects occurring abroad are distinguished from GHG effects occurring in Switzerland. The results show that the C-pool effect of an increased use of wood products with long service life is of minor importance; the substitution effects associated with the thermal use of industrial and post-consumer waste wood as well as with the substitution of 'conventional' materials are much more relevant, especially on a long-term. For construction materials, the Swiss share of the GHG effect related to the material substitution is relatively high, as mainly nationally produced concrete, mineral wool, and bricks are substituted for. For products used in interior works, the Swiss share of the GHG effect related to the material substitution is rather small (or even negative for single products) because mainly imports are substituted, such as ceramic tiles or steel produced in the EU. The results are rough estimates. Nonetheless, these calculations show that an increased use of wood in the building sector is a valid and valuable option for the mitigation of greenhouse gas emissions and for reaching GHG emission targets on a mid- to long-term basis. Still, the carbon storage and substitution capacity of an increased use of wood is relatively small compared to the overall greenhouse gas emissions of Switzerland.
AB - Long-living wood products can contribute to the mitigation of climate change in many ways. On the one hand, they act as a carbon pool during their service life, as they withdraw CO2 from its natural cycle. After their service life, they can substitute for fossil fuels if they are incinerated in adequate furnaces. On the other hand, wood products can substitute for more energy intense products made of 'conventional' materials. This paper quantifies the substitution and carbon pool effects of an increased use of wood in the building sector in Switzerland for the years 2000-2130. For this purpose, life cycle data on greenhouse gas (GHG) emissions of 12 wood products and their substitutes is used as proxies for the most important groups of building products used in construction and in interior works; this data is linked to the forecasted wood flows for each group of building products in a cohort-model. For the political assessment, GHG effects occurring abroad are distinguished from GHG effects occurring in Switzerland. The results show that the C-pool effect of an increased use of wood products with long service life is of minor importance; the substitution effects associated with the thermal use of industrial and post-consumer waste wood as well as with the substitution of 'conventional' materials are much more relevant, especially on a long-term. For construction materials, the Swiss share of the GHG effect related to the material substitution is relatively high, as mainly nationally produced concrete, mineral wool, and bricks are substituted for. For products used in interior works, the Swiss share of the GHG effect related to the material substitution is rather small (or even negative for single products) because mainly imports are substituted, such as ceramic tiles or steel produced in the EU. The results are rough estimates. Nonetheless, these calculations show that an increased use of wood in the building sector is a valid and valuable option for the mitigation of greenhouse gas emissions and for reaching GHG emission targets on a mid- to long-term basis. Still, the carbon storage and substitution capacity of an increased use of wood is relatively small compared to the overall greenhouse gas emissions of Switzerland.
KW - CO
KW - Climate change
KW - GHG
KW - Kyoto protocol
KW - Life cycle assessment
KW - Sink
KW - Substitution
KW - Wood products
UR - http://www.scopus.com/inward/record.url?scp=30444442534&partnerID=8YFLogxK
U2 - 10.1051/forest:2005080
DO - 10.1051/forest:2005080
M3 - Article
AN - SCOPUS:30444442534
SN - 1286-4560
VL - 62
SP - 889
EP - 902
JO - Annals of Forest Science
JF - Annals of Forest Science
IS - 8
ER -