Carbon fiber-reinforced pedicle screws reduce artifacts in magnetic resonance imaging of patients with lumbar spondylodesis

Christoph Fleege, Marcus Makowski, Michael Rauschmann, Katharina Luise Fraunhoffer, Peter Fennema, Mohammad Arabmotlagh, Marcus Rickert

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The study investigated whether the use of carbon fiber-reinforced PEEK screw material (CF-PEEK) can reduce magnetic resonance imaging (MRI) artifact formation. Two consecutive groups of patients were treated for degenerative spinal disorders of the lumbar spine with dorsal transpedicular spinal fusion. The first group (n = 27) received titanium pedicle screws. The second group (n = 20) received CF-PEEK screws. All patients underwent an MRI assessment within the first four postoperative weeks. For each operated segment, the surface of the artifact-free vertebral body area was calculated as percentage of the total vertebral body. For each implanted segment, the assessability of the spinal canal, the neuroforamina, and the pedicle screws, as well as the surrounding bony and soft-tissue structures was graded from 1 to 5. A mean artifact-free vertebral body area of 48.3 ± 5.0% was found in the in the titanium group and of 67.1 ± 5.6% in the CF-PEEK group (p ≤ 0.01). Assessability of the lumbar spine was significantly improved for CF-PEEK screws (p ≤ 0.01) for all measurements. CF-PEEK pedicle screws exhibit smaller artifact areas on vertebral body surfaces and their surrounding tissues, which improves the radiographic assessability. Hence, CF-PEEK may provide a diagnostic benefit.

Original languageEnglish
Article number16094
JournalScientific Reports
Volume10
Issue number1
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Carbon fiber-reinforced pedicle screws reduce artifacts in magnetic resonance imaging of patients with lumbar spondylodesis'. Together they form a unique fingerprint.

Cite this