Can We Use Diffusion Probabilistic Models for 3D Motion Prediction?

Hyemin Ahn, Esteve Valls Mascaro, Dongheui Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

After many researchers observed fruitfulness from the recent diffusion probabilistic model, its effectiveness in image generation is actively studied these days. In this paper, our objective is to evaluate the potential of diffusion probabilistic models for 3D human motion-related tasks. To this end, this pa-per presents a study of employing diffusion probabilistic models to predict future 3D human motion(s) from the previously observed motion. Based on the Human 3.6M and HumanEva-I datasets, our results show that diffusion probabilistic models are competitive for both single (deterministic) and multiple (stochastic) 3D motion prediction tasks, after finishing a single training process. In addition, we find out that diffusion probabilistic models can offer an attractive compromise, since they can strike the right balance between the likelihood and diversity of the predicted future motions. Our code is publicly available on the project website: https://sites.google.com/view/diffusion-motion-prediction.

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9837-9843
Number of pages7
ISBN (Electronic)9798350323658
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period29/05/232/06/23

Fingerprint

Dive into the research topics of 'Can We Use Diffusion Probabilistic Models for 3D Motion Prediction?'. Together they form a unique fingerprint.

Cite this