Calibration of ultrasonic sensors using optoacoustics

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Ultrasonic detectors are commonly calibrated by finding their response to incident plane waves. However, in optoacoustics, the response to broadband point sources is required. To induce such sources using the optoacoustic effect, the illuminated object's dimensions must be smaller than the resolution achievable by the optoacoustic system. The main difficulty in such measurements is that the magnitude of the field emitted by such sources is proportional to their dimensions, and thus may be weak compared to parasitic sources in the setup. In this work we experimentally demonstrate two methods for calibrating acoustic detectors. In both methods, acoustic sources are optoacoustically induced in large optically absorbing slabs. Despite the large dimensions of the illuminated objects, the geometry used yields wide-band acoustic fields, which are perceived by the detectors as originating from point sources.

Original languageEnglish
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2011
DOIs
StatePublished - 2011
EventPhotons Plus Ultrasound: Imaging and Sensing 2011 - San Francisco, CA, United States
Duration: 23 Jan 201125 Jan 2011

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7899
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2011
Country/TerritoryUnited States
CitySan Francisco, CA
Period23/01/1125/01/11

Keywords

  • Acoustic calibration
  • Acoustic sensors
  • Optoacoustics
  • Photoacoustics

Fingerprint

Dive into the research topics of 'Calibration of ultrasonic sensors using optoacoustics'. Together they form a unique fingerprint.

Cite this