Calibration of dynamic traffic assignment models with point-to-point traffic surveillance

Vikrant Vaze, Constantinos Antoniou, Yang Wen, Moshe Ben-Akiva

Research output: Contribution to journalArticlepeer-review

57 Scopus citations


Accurate calibration of demand and supply simulators within a dynamic traffic assignment system is critical for consistent travel information and efficient traffic management. Emerging traffic surveillance devices such as automatic vehicle identification (AVI) technology provide a rich source of disaggregated traffic data. A methodology for the joint calibration of demand and supply model parameters using travel time measurements obtained from these emerging traffic-sensing technologies is presented. The calibration problem has been formulated as a stochastic optimization framework. Two different algorithms are used for solving the calibration problem: a gradient approximation-based path search method and a random search metaheuristic. The methodology is first tested by using a small synthetic study network to illustrate its effectiveness and obtain insight into its operation. The methodology is further applied to a real traffic network in Lower Westchester County, New York, to demonstrate its scalability. The estimation results are tested by using a calibrated microscopic traffic simulator. The results are compared with the base case of calibration by the use of only the conventional point sensor data. The results indicate that use of AVI data significantly improves calibration accuracy.

Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalTransportation Research Record
Issue number2090
StatePublished - 2009
Externally publishedYes


Dive into the research topics of 'Calibration of dynamic traffic assignment models with point-to-point traffic surveillance'. Together they form a unique fingerprint.

Cite this