TY - JOUR
T1 - C & N isotope analysis of diclofenac to distinguish oxidative and reductive transformation and to track commercial products
AU - Maier, Michael P.
AU - De Corte, Simon
AU - Nitsche, Sebastian
AU - Spaett, Thomas
AU - Boon, Nico
AU - Elsner, Martin
PY - 2014/2/18
Y1 - 2014/2/18
N2 - Although diclofenac is frequently found in aquatic systems, its degradability in the environment remains imperfectly understood. On the one hand, evidence from concentration analysis alone is inconclusive if an unknown hydrology impedes a distinction between degradation and dilution. On the other hand, not all transformation products may be detectable. As a new approach, we therefore developed GC-IRMS (gas chromatography-isotope-ratio mass-spectrometry) analysis for carbon and nitrogen isotope measurements of diclofenac. The method uses a derivatization step that can be conducted either online or offline, for optimized throughput or sensitivity, respectively. In combination with on-column injection, the latter method enables determination of diclofenac isotope ratios down to the sub-μgL-1 range in environmental samples. Degradation in an aerobic sediment-water system showed strong nitrogen isotope fractionation (εN = -7.1‰), whereas reductive diclofenac dechlorination was associated with significant carbon isotope fractionation (εC = -2.0‰). Hence dual element isotope analysis bears potential not only to detect diclofenac degradation, but even to distinguish both transformation pathways in the environment. In an explorative survey, analysis of commercial diclofenac products showed significant differences in carbon and nitrogen isotope ratios, demonstrating a further potential to track, and potentially even to authenticate, commercial production batches.
AB - Although diclofenac is frequently found in aquatic systems, its degradability in the environment remains imperfectly understood. On the one hand, evidence from concentration analysis alone is inconclusive if an unknown hydrology impedes a distinction between degradation and dilution. On the other hand, not all transformation products may be detectable. As a new approach, we therefore developed GC-IRMS (gas chromatography-isotope-ratio mass-spectrometry) analysis for carbon and nitrogen isotope measurements of diclofenac. The method uses a derivatization step that can be conducted either online or offline, for optimized throughput or sensitivity, respectively. In combination with on-column injection, the latter method enables determination of diclofenac isotope ratios down to the sub-μgL-1 range in environmental samples. Degradation in an aerobic sediment-water system showed strong nitrogen isotope fractionation (εN = -7.1‰), whereas reductive diclofenac dechlorination was associated with significant carbon isotope fractionation (εC = -2.0‰). Hence dual element isotope analysis bears potential not only to detect diclofenac degradation, but even to distinguish both transformation pathways in the environment. In an explorative survey, analysis of commercial diclofenac products showed significant differences in carbon and nitrogen isotope ratios, demonstrating a further potential to track, and potentially even to authenticate, commercial production batches.
UR - http://www.scopus.com/inward/record.url?scp=84894245305&partnerID=8YFLogxK
U2 - 10.1021/es403214z
DO - 10.1021/es403214z
M3 - Article
C2 - 24397428
AN - SCOPUS:84894245305
SN - 0013-936X
VL - 48
SP - 2312
EP - 2320
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 4
ER -