TY - JOUR
T1 - Bundlefusion
T2 - Real-time globally consistent 3D reconstruction using on-the-fly surface reintegration
AU - Dai, Angela
AU - Nießner, Matthias
AU - Zollhöfer, Michael
AU - Izadi, Shahram
AU - Theobalt, Christian
N1 - Publisher Copyright:
© 2017 ACM.
PY - 2017/5
Y1 - 2017/5
N2 - Real-time, high-quality, 3D scanning of large-scale scenes is key to mixed reality and robotic applications. However, scalability brings challenges of drift in pose estimation, introducing significant errors in the accumulated model. Approaches often require hours of offline processing to globally correct model errors. Recent online methods demonstrate compelling results but suffer from (1) needing minutes to perform online correction, preventing true real-time use; (2) brittle frame-to-frame (or frame-to-model) pose estimation, resulting in many tracking failures; or (3) supporting only unstructured point-based representations, which limit scan quality and applicability. We systematically address these issues with a novel, real-time, end-to-end reconstruction framework. At its core is a robust pose estimation strategy, optimizing per frame for a global set of camera poses by considering the complete history of RGB-D input with an efficient hierarchical approach. We remove the heavy reliance on temporal tracking and continually localize to the globally optimized frames instead. We contribute a parallelizable optimization framework, which employs correspondences based on sparse features and dense geometric and photometric matching. Our approach estimates globally optimized (i.e., bundle adjusted) poses in real time, supports robust trackingwith recovery from gross tracking failures (i.e., relocalization), and re-estimates the 3D model in real time to ensure global consistency, all within a single framework. Our approach outperforms state-of-the-art online systems with quality on par to offline methods, but with unprecedented speed and scan completeness. Our framework leads to a comprehensive online scanning solution for large indoor environments, enabling ease of use and high-quality results.
AB - Real-time, high-quality, 3D scanning of large-scale scenes is key to mixed reality and robotic applications. However, scalability brings challenges of drift in pose estimation, introducing significant errors in the accumulated model. Approaches often require hours of offline processing to globally correct model errors. Recent online methods demonstrate compelling results but suffer from (1) needing minutes to perform online correction, preventing true real-time use; (2) brittle frame-to-frame (or frame-to-model) pose estimation, resulting in many tracking failures; or (3) supporting only unstructured point-based representations, which limit scan quality and applicability. We systematically address these issues with a novel, real-time, end-to-end reconstruction framework. At its core is a robust pose estimation strategy, optimizing per frame for a global set of camera poses by considering the complete history of RGB-D input with an efficient hierarchical approach. We remove the heavy reliance on temporal tracking and continually localize to the globally optimized frames instead. We contribute a parallelizable optimization framework, which employs correspondences based on sparse features and dense geometric and photometric matching. Our approach estimates globally optimized (i.e., bundle adjusted) poses in real time, supports robust trackingwith recovery from gross tracking failures (i.e., relocalization), and re-estimates the 3D model in real time to ensure global consistency, all within a single framework. Our approach outperforms state-of-the-art online systems with quality on par to offline methods, but with unprecedented speed and scan completeness. Our framework leads to a comprehensive online scanning solution for large indoor environments, enabling ease of use and high-quality results.
KW - Global consistency
KW - RGB-D
KW - Real-time
KW - Scalable
KW - Scan
UR - http://www.scopus.com/inward/record.url?scp=85018991728&partnerID=8YFLogxK
U2 - 10.1145/3054739
DO - 10.1145/3054739
M3 - Article
AN - SCOPUS:85018991728
SN - 0730-0301
VL - 36
JO - ACM Transactions on Graphics
JF - ACM Transactions on Graphics
IS - 3
M1 - 24
ER -