Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells

Alba Monferrer, Jessica A. Kretzmann, Christian Sigl, Pia Sapelza, Anna Liedl, Barbara Wittmann, Hendrik Dietz

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Effective broadband antiviral platforms that can act on existing viruses and viruses yet to emerge are not available, creating a need to explore treatment strategies beyond the trodden paths. Here, we report virus-encapsulating DNA origami shells that achieve broadband virus trapping properties by exploiting avidity and a widespread background affinity of viruses to heparan sulfate proteoglycans (HSPG). With a calibrated density of heparin and heparan sulfate (HS) derivatives crafted to the interior of DNA origami shells, we could encapsulate adeno, adeno-associated, chikungunya, dengue, human papilloma, noro, polio, rubella, and SARS-CoV-2 viruses or virus-like particles, in one and the same HS-functionalized shell system. Additional virus-type-specific binders were not needed for the trapping. Depending on the relative dimensions of shell to virus particles, multiple virus particles may be trapped per shell, and multiple shells can cover the surface of clusters of virus particles. The steric occlusion provided by the heparan sulfate-coated DNA origami shells can prevent viruses from further interactions with receptors, possibly including those found on cell surfaces.

Original languageEnglish
Pages (from-to)20002-20009
Number of pages8
JournalACS Nano
Volume16
Issue number12
DOIs
StatePublished - 27 Dec 2022

Keywords

  • DNA origami
  • antiviral
  • broad-spectrum
  • heparan sulfate
  • heparin
  • virus-like particles

Fingerprint

Dive into the research topics of 'Broad-Spectrum Virus Trapping with Heparan Sulfate-Modified DNA Origami Shells'. Together they form a unique fingerprint.

Cite this