Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr3

Ayala V. Cohen, David A. Egger, Andrew M. Rappe, Leeor Kronik

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

We consider the Br vacancy in CsPbBr3 as a prototype for the impact of structural dynamics on defect energetics in halide perovskites (HaPs). Using first-principles molecular dynamics based on density functional theory, we find that the static picture of defect energetics breaks down; the energy level associated with a Br vacancy is found to be intrinsically dynamic, oscillating by as much as 1 eV on the picosecond time scale at room temperature. These significant energy fluctuations are correlated with the distance between the neighboring Pb atoms across the vacancy and with the electrostatic potential at these Pb atomic sites. We expect this unusually strong coupling of structural dynamics and defect energetics to bear important implications for both experimental and theoretical analyses of defect characteristics in HaPs. It may also hold significant ramifications for carrier transport and defect tolerance in this class of photovoltaic materials.

Original languageEnglish
Pages (from-to)4490-4498
Number of pages9
JournalJournal of Physical Chemistry Letters
Volume10
Issue number16
DOIs
StatePublished - 15 Aug 2019

Fingerprint

Dive into the research topics of 'Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr3'. Together they form a unique fingerprint.

Cite this