Bounds on List Decoding of Linearized Reed-Solomon Codes

Sven Puchinger, Johan Rosenkilde

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). List decoding in these extreme cases is well-studied, and the two code classes behave very differently in terms of list size, but nothing is known for the general case. In this paper, we derive a lower bound on the list size for LRS codes, which is, for a large class of LRS codes, exponential directly above the Johnson radius. Furthermore, we show that some families of linearized Reed-Solomon codes with constant numbers of blocks cannot be list decoded beyond the unique decoding radius.

Original languageEnglish
Title of host publication2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages154-159
Number of pages6
ISBN (Electronic)9781538682098
DOIs
StatePublished - 12 Jul 2021
Event2021 IEEE International Symposium on Information Theory, ISIT 2021 - Virtual, Melbourne, Australia
Duration: 12 Jul 202120 Jul 2021

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2021-July
ISSN (Print)2157-8095

Conference

Conference2021 IEEE International Symposium on Information Theory, ISIT 2021
Country/TerritoryAustralia
CityVirtual, Melbourne
Period12/07/2120/07/21

Keywords

  • Linearized Reed-Solomon Codes
  • List Decoding
  • Sum-Rank Metric

Fingerprint

Dive into the research topics of 'Bounds on List Decoding of Linearized Reed-Solomon Codes'. Together they form a unique fingerprint.

Cite this