Boundary mapping through manifold learning for connectivity-based cortical parcellation

Salim Arslan, Sarah Parisot, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The study of the human connectome is becoming more popular due to its potential to reveal the brain function and structure. A critical step in connectome analysis is to parcellate the cortex into coherent regions that can be used to build graphical models of connectivity. Computing an optimal parcellation is of great importance,as this stage can affect the performance of the subsequent analysis. To this end,we propose a new parcellation method driven by structural connectivity estimated from diffusion MRI. We learn a manifold from the local connectivity properties of an individual subject and identify parcellation boundaries as points in this low-dimensional embedding where the connectivity patterns change. We compute spatially contiguous and non-overlapping parcels from these boundaries after projecting them back to the native cortical surface. Our experiments with a set of 100 subjects show that the proposed method can produce parcels with distinct patterns of connectivity and a higher degree of homogeneity at varying resolutions compared to the state-of-the-art methods,hence can potentially provide a more reliable set of network nodes for connectome analysis.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
EditorsSebastian Ourselin, Leo Joskowicz, Mert R. Sabuncu, William Wells, Gozde Unal
PublisherSpringer Verlag
Pages115-122
Number of pages8
ISBN (Print)9783319467191
DOIs
StatePublished - 2016
Externally publishedYes
Event1st International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016 - Athens, Greece
Duration: 21 Oct 201621 Oct 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9900 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference1st International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016
Country/TerritoryGreece
CityAthens
Period21/10/1621/10/16

Fingerprint

Dive into the research topics of 'Boundary mapping through manifold learning for connectivity-based cortical parcellation'. Together they form a unique fingerprint.

Cite this