BLOND, a building-level office environment dataset of typical electrical appliances

Thomas Kriechbaumer, Hans Arno Jacobsen

Research output: Contribution to journalArticlepeer-review

88 Scopus citations

Abstract

Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of.

Original languageEnglish
Article number180048
JournalScientific Data
Volume5
DOIs
StatePublished - 27 Mar 2018

Fingerprint

Dive into the research topics of 'BLOND, a building-level office environment dataset of typical electrical appliances'. Together they form a unique fingerprint.

Cite this