Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

Javier Esparza, Vincent P. Grande

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study black-box testing for stochastic systems and arbitrary ω-regular specifications, explicitly including liveness properties. We are given a finite-state probabilistic system that we can only execute from the initial state. We have no information on the number of reachable states, or on the probabilities; further, we can only partially observe the states. The only action we can take is to restart the system. We design restart strategies guaranteeing that, if the specification is violated with non-zero probability, then w.p.1 the number of restarts is finite, and the infinite run executed after the last restart violates the specification. This improves on previous work that required full observability. We obtain asymptotically optimal upper bounds on the expected number of steps until the last restart. We conduct experiments on a number of benchmarks, and show that our strategies allow one to find violations in Markov chains much larger than the ones considered in previous work.

Original languageEnglish
Title of host publication50th International Colloquium on Automata, Languages, and Programming, ICALP 2023
EditorsKousha Etessami, Uriel Feige, Gabriele Puppis
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772785
DOIs
StatePublished - Jul 2023
Event50th International Colloquium on Automata, Languages, and Programming, ICALP 2023 - Paderborn, Germany
Duration: 10 Jul 202314 Jul 2023

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume261
ISSN (Print)1868-8969

Conference

Conference50th International Colloquium on Automata, Languages, and Programming, ICALP 2023
Country/TerritoryGermany
CityPaderborn
Period10/07/2314/07/23

Keywords

  • Partially observable Markov chains
  • black-box testing
  • ω-regular properties

Fingerprint

Dive into the research topics of 'Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems'. Together they form a unique fingerprint.

Cite this