BiSeg-SAM: Weakly-Supervised Post-Processing Framework for Boosting Binary Segmentation in Segment Anything Models

Encheng Su, Hu Cao, Alois Knoll

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Accurate segmentation of polyps and skin lesions is essential for diagnosing colorectal and skin cancers. While various segmentation methods for polyps and skin lesions using fully supervised deep learning techniques have been developed, the pixel-level annotation of medical images by doctors is both time-consuming and costly. Foundational vision models like the Segment Anything Model (SAM) have demonstrated superior performance; however, directly applying SAM to medical segmentation may not yield satisfactory results due to the lack of domain-specific medical knowledge. In this paper, we propose BiSeg-SAM, a SAM-guided weakly supervised prompting and boundary refinement network for the segmentation of polyps and skin lesions. Specifically, we fine-tune SAM combined with a CNN module to learn local features. We introduce a WeakBox with two functions: automatically generating box prompts for the SAM model and using our proposed Multi-choice Mask-to-Box (MM2B) transformation for rough mask-to-box conversion, addressing the mismatch between coarse labels and precise predictions. Additionally, we apply scale consistency (SC) loss for prediction scale alignment. Our DetailRefine module enhances boundary precision and segmentation accuracy by refining coarse predictions using a limited amount of ground truth labels. This comprehensive approach enables BiSeg-SAM to achieve excellent multi-task segmentation performance. Our method demonstrates significant superiority over state-of-the-art (SOTA) methods when tested on five polyp datasets and one skin cancer dataset. The code for this work is open-sourced and available at https://github.com/suencgo/BiSeg-SAM.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
EditorsMario Cannataro, Huiru Zheng, Lin Gao, Jianlin Cheng, Joao Luis de Miranda, Ester Zumpano, Xiaohua Hu, Young-Rae Cho, Taesung Park
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2430-2437
Number of pages8
ISBN (Electronic)9798350386226
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024 - Lisbon, Portugal
Duration: 3 Dec 20246 Dec 2024

Publication series

NameProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024

Conference

Conference2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
Country/TerritoryPortugal
CityLisbon
Period3/12/246/12/24

Keywords

  • Binary Segmentation
  • Segment Anything Model
  • Weakly Supervised Learning

Fingerprint

Dive into the research topics of 'BiSeg-SAM: Weakly-Supervised Post-Processing Framework for Boosting Binary Segmentation in Segment Anything Models'. Together they form a unique fingerprint.

Cite this