Biologically Inspired Neural Path Finding

Hang Li, Qadeer Khan, Volker Tresp, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The human brain can be considered to be a graphical structure comprising of tens of billions of biological neurons connected by synapses. It has the remarkable ability to automatically re-route information flow through alternate paths, in case some neurons are damaged. Moreover, the brain is capable of retaining information and applying it to similar but completely unseen scenarios. In this paper, we take inspiration from these attributes of the brain to develop a computational framework to find the optimal low cost path between a source node and a destination node in a generalized graph. We show that our framework is capable of handling unseen graphs at test time. Moreover, it can find alternate optimal paths, when nodes are arbitrarily added or removed during inference, while maintaining a fixed prediction time. Code accompanying this work can be found here: https://github.com/hangligit/pathfinding.

Original languageEnglish
Title of host publicationBrain Informatics - 15th International Conference, BI 2022, Proceedings
EditorsMufti Mahmud, Jing He, Stefano Vassanelli, André van Zundert, Ning Zhong
PublisherSpringer Science and Business Media Deutschland GmbH
Pages329-342
Number of pages14
ISBN (Print)9783031150364
DOIs
StatePublished - 2022
Event15th International Conference on Brain Informatics, BI 2022 - Virtual, Online
Duration: 15 Jul 202217 Jul 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13406 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Conference on Brain Informatics, BI 2022
CityVirtual, Online
Period15/07/2217/07/22

Keywords

  • Cognition
  • Graphical Neural Networks
  • Path finding

Fingerprint

Dive into the research topics of 'Biologically Inspired Neural Path Finding'. Together they form a unique fingerprint.

Cite this