TY - JOUR
T1 - Bioaerosol sampling and bioanalysis
T2 - Applicability of the next generation impactor for quantifying Legionella pneumophila in droplet aerosols by flow cytometry
AU - Heining, Lena
AU - Welp, Laura
AU - Hugo, Achim
AU - Elsner, Martin
AU - Seidel, Michael
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2025/1
Y1 - 2025/1
N2 - Bioaerosol generation, sampling, and cultivation-independent quantification of pathogenic bacteria play a crucial role in studying dose-response effects of Legionella pneumophila. Here, the Next Generation Impactor (NGI), initially created for pharmaceutical inhaling studies, was assessed for its potential to sample airborne bioaerosols and to separate size-dependent wet droplets by incrementally increasing the airflow speed. This stainless-steel sampler was shown in this study to be suitable for sampling prior to cultivation-independent analysis of pathogen-containing bioaerosols using washable cups. The applicability was studied by quantifying the total and intact cell count of L. pneumophila by flow cytometry after being dispersed into a droplet aerosol. Our results demonstrate a high total sampling efficiency of 95.5% ± 11.8% despite a lower biological sampling efficiency of 59.7% ± 16.5% for dry aerosols. However, by elevating the relative humidity (RH) to 100% in a liquid aerosolization unit, the biological sampling efficiency increased to over 90% for L. pneumophila. More than 50% of the cells were found in stage 1 using the liquid aerosolization unit. In comparison, 80% of the cells were sampled in stages 4–6 at 30% RH. Specifically, while at 100% RH, the droplet size mattered, at 30% RH, the size distribution of dry particles, in this case L. pneumophila, was relevant due to evaporation processes, which explains the size differences. These findings indicate the potential of the NGI for further exploration and application in studying other aerosol-borne pathogens, especially concerning the size distribution of wet droplets, viability, or effect-based bioanalysis.
AB - Bioaerosol generation, sampling, and cultivation-independent quantification of pathogenic bacteria play a crucial role in studying dose-response effects of Legionella pneumophila. Here, the Next Generation Impactor (NGI), initially created for pharmaceutical inhaling studies, was assessed for its potential to sample airborne bioaerosols and to separate size-dependent wet droplets by incrementally increasing the airflow speed. This stainless-steel sampler was shown in this study to be suitable for sampling prior to cultivation-independent analysis of pathogen-containing bioaerosols using washable cups. The applicability was studied by quantifying the total and intact cell count of L. pneumophila by flow cytometry after being dispersed into a droplet aerosol. Our results demonstrate a high total sampling efficiency of 95.5% ± 11.8% despite a lower biological sampling efficiency of 59.7% ± 16.5% for dry aerosols. However, by elevating the relative humidity (RH) to 100% in a liquid aerosolization unit, the biological sampling efficiency increased to over 90% for L. pneumophila. More than 50% of the cells were found in stage 1 using the liquid aerosolization unit. In comparison, 80% of the cells were sampled in stages 4–6 at 30% RH. Specifically, while at 100% RH, the droplet size mattered, at 30% RH, the size distribution of dry particles, in this case L. pneumophila, was relevant due to evaporation processes, which explains the size differences. These findings indicate the potential of the NGI for further exploration and application in studying other aerosol-borne pathogens, especially concerning the size distribution of wet droplets, viability, or effect-based bioanalysis.
KW - Bioaerosols
KW - Legionella pneumophila
KW - Next generation impactor
KW - Sampling efficiency
KW - Size distribution
UR - http://www.scopus.com/inward/record.url?scp=85203449563&partnerID=8YFLogxK
U2 - 10.1016/j.jaerosci.2024.106460
DO - 10.1016/j.jaerosci.2024.106460
M3 - Article
AN - SCOPUS:85203449563
SN - 0021-8502
VL - 183
JO - Journal of Aerosol Science
JF - Journal of Aerosol Science
M1 - 106460
ER -