TY - JOUR
T1 - Binding of phosphatidylserine-positive microparticles by PBMCs classifies disease severity in COVID-19 patients
AU - Rausch, Lisa
AU - Lutz, Konstantin
AU - Schifferer, Martina
AU - Winheim, Elena
AU - Gruber, Rudi
AU - Oesterhaus, Elina F.
AU - Rinke, Linus
AU - Hellmuth, Johannes C.
AU - Scherer, Clemens
AU - Muenchhoff, Maximilian
AU - Mandel, Christopher
AU - Bergwelt-Baildon, Michael
AU - Simons, Mikael
AU - Straub, Tobias
AU - Krug, Anne B.
AU - Kranich, Jan
AU - Brocker, Thomas
N1 - Publisher Copyright:
© 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
PY - 2021/12
Y1 - 2021/12
N2 - Infection with SARS-CoV-2 is associated with thromboinflammation, involving thrombotic and inflammatory responses, in many COVID-19 patients. In addition, immune dysfunction occurs in patients characterised by T cell exhaustion and severe lymphopenia. We investigated the distribution of phosphatidylserine (PS), a marker of dying cells, activated platelets and platelet-derived microparticles (PMP), during the clinical course of COVID-19. We found an unexpectedly high amount of blood cells loaded with PS+ PMPs for weeks after the initial COVID-19 diagnosis. Elevated frequencies of PS+PMP+ PBMCs correlated strongly with increasing disease severity. As a marker, PS outperformed established laboratory markers for inflammation, leucocyte composition and coagulation, currently used for COVID-19 clinical scoring. PS+ PMPs preferentially bound to CD8+ T cells with gene expression signatures of proliferating effector rather than memory T cells. As PS+ PMPs carried programmed death-ligand 1 (PD-L1), they may affect T cell expansion or function. Our data provide a novel marker for disease severity and show that PS, which can trigger the blood coagulation cascade, the complement system, and inflammation, resides on activated immune cells. Therefore, PS may serve as a beacon to attract thromboinflammatory processes towards lymphocytes and cause immune dysfunction in COVID-19.
AB - Infection with SARS-CoV-2 is associated with thromboinflammation, involving thrombotic and inflammatory responses, in many COVID-19 patients. In addition, immune dysfunction occurs in patients characterised by T cell exhaustion and severe lymphopenia. We investigated the distribution of phosphatidylserine (PS), a marker of dying cells, activated platelets and platelet-derived microparticles (PMP), during the clinical course of COVID-19. We found an unexpectedly high amount of blood cells loaded with PS+ PMPs for weeks after the initial COVID-19 diagnosis. Elevated frequencies of PS+PMP+ PBMCs correlated strongly with increasing disease severity. As a marker, PS outperformed established laboratory markers for inflammation, leucocyte composition and coagulation, currently used for COVID-19 clinical scoring. PS+ PMPs preferentially bound to CD8+ T cells with gene expression signatures of proliferating effector rather than memory T cells. As PS+ PMPs carried programmed death-ligand 1 (PD-L1), they may affect T cell expansion or function. Our data provide a novel marker for disease severity and show that PS, which can trigger the blood coagulation cascade, the complement system, and inflammation, resides on activated immune cells. Therefore, PS may serve as a beacon to attract thromboinflammatory processes towards lymphocytes and cause immune dysfunction in COVID-19.
UR - http://www.scopus.com/inward/record.url?scp=85121689263&partnerID=8YFLogxK
U2 - 10.1002/jev2.12173
DO - 10.1002/jev2.12173
M3 - Article
C2 - 34854246
AN - SCOPUS:85121689263
SN - 2001-3078
VL - 10
JO - Journal of Extracellular Vesicles
JF - Journal of Extracellular Vesicles
IS - 14
M1 - e12173
ER -